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Angular position detection of single nanoparticles on rolled-up optical microcavities
with lifted degeneracy
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Nanoparticle position detection is prevented in highly symmetric whispering-gallery-mode optical microcavi-
ties due to the redistributable electric field of resonant light therein. In asymmetric tubular microcavities formed
by a rolled-up slab waveguide, the optical resonant modes are split and locked to the spiral-shaped geometry
which provides a reference point for the nodes and antinodes of the electric field within the microcavity. The
discriminative responses of neighboring resonant modes to a local disturbance provide a method for angular
position detection of a single nanoparticle on a rolled-up optical microcavity. These findings add functionality to
microcavity applications and a deeper understanding of cavity electrodynamics.
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I. INTRODUCTION

Optical microcavities have gained considerable attention
due to the ultrahigh sensitivity of their resonant peak positions
to changes in the refractive index of their surroundings [1–4].
This sensitivity is a result of strong light confinement in a
small volume, leading to an extended evanescent field which
overlaps with the surrounding medium. This field has been
exploited for nondestructive real-time sensing applications as
well as strong light-matter interactions [5–8]. Several types
of optical microcavities have been investigated, including
whispering-gallery structures such as microspheres [2,3],
toroids [1,4–8], and other ringlike structures [9,10]. While
these devices have already proven to be useful detectors, they
are limited by nonselectivity if the surface is not functionalized
or low versatility if it is. This problem could be overcome,
greatly increasing microcavity functionality, by resolving the
angular position of the analyte. An array of functionalized
regions on microcavities could be used to achieve sensing of
different analytes on a single microcavity.

In this article, we will discuss the importance of microcavity
asymmetry on its sensing capabilities and develop a model
which shows how angular position detection is possible in
microcavities with well-defined asymmetric features.

Resonant modes in symmetric ring cavities, as shown
in Fig. 1(a), have degenerate clockwise (CW) and counter-
clockwise (CCW) components [11]. In the presence of small
asymmetries or nanoparticles, a reciprocal backscattering
mechanism [12] leads to degeneracy lifting as shown in
Fig. 1(b) [see details in Appendix]. The amplitude of the
splitting is directly related to the particle size [6,7]. However,
the angular position of the nanoparticles on symmetric micro-
cavities cannot be determined from this splitting because the
circumferential symmetry does not allow the definition of any
reference point. Modes arising from asymmetric microcavities
have been shown to be intrinsically split [13]. In this case,
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the positions of the split modes are locked to features of
the microcavity geometry. These locked microcavity modes
can be differentially perturbed by the angular position of
a nanoparticle as shown in Fig. 1(c). For precise angular
position detection using inherent mode splitting, a well-defined
asymmetry needs to be created in the microcavity. Rolled-up
microcavities can provide this requirement as their fabrication
automatically leads to well-understood asymmetry resulting
in split modes [14,15].

In the following, we will demonstrate how angular position
detection of a single nanoparticle can be realized using the
split modes in rolled-up optical microcavities. In Sec. II, we
give a brief introduction of rolled-up microcavities including
the fabrication method as well as basic optical properties. In
Sec. III we present a variational approach to calculate the mode
splitting in rolled-up microcavities which will provide the basis
for our sensing model. In Sec. IV the variational model is
extended to calculate the effect of a small particle on split
modes based on perturbation theory. To verify our theoretical
models we performed finite-difference time-domain (FDTD)
simulations. The results from FDTD simulations and our
theoretical models agree well with each other. In Sec. V, an
approach to detect a single nanoparticle’s angular position
by monitoring split modes is proposed. The effect of the
nanoparticle size, the axial confinement of the rolled-up
microcavities, and the minimum Q factor in the coupled
systems are discussed in Sec. VI. Finally, we summarize our
conclusions in Sec. VII.

II. ROLLED-UP OPTICAL MICROCAVITIES

By rolling up prestrained nanomembranes [16,17], ringlike
optical microcavities can be fabricated in a manner that
facilitates device integration [18–23]. Optical microcavities
produced in this way have excellent sensitivity as detectors
due to broad evanescent fields from the subwavelength-thin
walls [24]. Recently, these microcavities have been used as
detectors in a variety of capacities [24,25].
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FIG. 1. (Color online) (a) Illustration of a symmetric microcavity, with accompanying degenerate CW and CCW peak components. The
blue (solid line) and red (dotted line) patterns indicate their electric fields, respectively. (b) Illustration of an asymmetric microcavity; the CW
and CCW components of the optical mode are locked and no longer degenerate, leading to a mode splitting, which can be perturbed by the
presence of a nanoparticle as shown in (c).

One of the distinct characters of rolled-up optical micro-
cavities is that their geometric structures are asymmetric. This
asymmetry is a result of the method of their fabrication as
shown in Fig. 2(a). The resulting hollow tubular structure has
an asymmetric cross section, which has surfaces described
as Archimedean spirals. The size of the tubular structure is
controlled via the residual strain gradient and thickness of the
nanomembrane [26,27]. Light confinement in this structure
has been demonstrated by exciting optical modes using
photoluminescence [18] or by transmission measurements
based on optical fibers [28] or waveguides [29].

The flexible production of this type of microcavity allows
the introduction of axial light confinement by adding a lobe
structure to vary the profile in the axial direction [15];
see, for example, the details in Figs. 2(b) and 2(c). In this
article, however, only the fundamental modes in rolled-up
microcavities are considered because they can be treated using
a two-dimensional model [15].

III. MODEL OF MODE SPLITTING

A clear physical model of mode splitting is crucial for
angle-resolved nanoparticle sensing purposes. To address this
problem, we developed a coupled-circular-waveguide model
as shown in Fig. 3.

Due to the subwavelength-thin wall thickness commonly
found in rolled-up microcavities, transverse magnetic (TM)
polarized modes preferably exist as they possess better light
confinement in the wall than transverse electric (TE) polarized
modes [14,18]. Therefore, the scalar Helmholtz wave equation
is applied for the z component Ez(ρ,θ ) of the electric field:

− 1

n2
∇2Ez(ρ,θ ) = k2Ez(ρ,θ ), (1)

where n, k, and ∇2 are the refractive index, the wave
vector in vacuum, and the two-dimensional Laplace operator,
respectively. Based on the adiabatic approximation [30], the

(a)

(b)
L L

L/2L/2 -L/2-L/2

E

E E

E
E
E

|

| |

|
|
|

|

| |

|
|
|

2

2 2

2

2

2z,m

z,m+1 z,m+1,l=1

z,m,l=3

z,m,l=2

z,m,l=1

Lz/2-Lz/2

Lz

(c)

E
ne

rg
y

P
ot

en
tia

l

P
ot

en
tia

l

E
ne

rg
y

SpectrumSpectrum

Axial coordinateAxial coordinate

em,l=1em

em+1,l=1em+1

em,l=2

em,l=3

FIG. 2. (Color online) (a) Illustration of how nanomembranes are rolled up into tubular structures. A differentially strained nanomembrane
(green, top layer) is deposited on a sacrificial layer (gray, bottom layer). The nanomembranes roll as the sacrificial layer is etched away creating
an asymmetric tubular structure. The dashed line in (a) indicates the interface of the windings, where the surfaces of the membrane touch
each other without gap. Illustrations of rolled-up microcavities without lobe structure (b) and with a rectangular-shaped lobe structure (c).
The axial potential (thick green line) and resulting light axial field distribution (black lines for the fundamental modes and colored lines for
the higher-order axial modes) are plotted in the lower left corner. In the lower right corner, corresponding spectra are shown. Intrinsic mode
splitting due to the “steps” caused by the edges of the rolled membrane is shown with a dashed line.
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FIG. 3. (Color online) Coupled-circular-waveguide model of
mode splitting in rolled-up optical microcavities. Diagram of (a) a
rolled-up optical microcavity (left) that is equivalent to a coupled-
circular waveguide (right) which is solvable using analytical and
numerical methods, (b) profile of the refractive index n(ρ) and the
effective refractive index neff , and (c) electric field distribution along
circumferential direction. The electric fields of the OSS mode are
orthogonally distributed with respect to those of the LOSS mode.

electric field is treated as Ez(ρ,θ ) = P (ρ)�(θ ) and Eq. (1)
becomes[

ρ2 d2

dρ2
+ ρ

d

dρ
+ n2(ρ)

ω2

c2
ρ2

]
P (ρ) = β2P (ρ), (2)

d2

dθ2
�(θ ) = −β2�(θ ), (3)

where β is the propagation constant, which is solved numeri-
cally from Eq. (2) by introducing an effective refractive index
neff such that β = neffk [see details in Fig. 3(b)]. Then, the
solution of Eq. (3) is expressed by �(θ ) = A sin(βθ + ϕ) with
the amplitude A and the phase ϕ. To satisfy the continuity of
the electric field �(θ ) at the two steps, we have

neff,1L1 + neff,2L2 = mλ, (4)

ϕ2 = ϕ1 − β2(L1 + L2), (5)

where L, m, and λ are the length of the coupled-circular
waveguide, the azimuthal mode number, and the wavelength in
vacuum, respectively. The subscript indices 1 and 2 distinguish
the variables in the thick- and thin-wall part. Equation (4) is
the key equation to obtain the resonant modes in rolled-up
microcavities [18]. Equation (5) describes the phase relation
of the electric fields in the coupled-circular waveguide. The
phase (e.g., ϕ1) is determined by minimizing the Hamiltonian
U of the system [30]:

U (ϕ1) =
∫ |∇ × �(θ ; ϕ1)|2dθ∫

n2|�(θ ; ϕ1)|2dθ
. (6)

In principle, there exists a certain phase which minimizes
Eq. (6) that is the lowest energy mode of the system, called

the lowest occupied standing-wave state (LOSS). Since the
set of modes allowed by a cavity system are orthogonal to
each other [31], the next highest mode is orthogonal to the
LOSS and is called the orthogonal standing-wave state (OSS).
The LOSS and OSS have different electric field distributions
along the coupled-circular waveguide [see Fig. 3(c)], resulting
in different resonant energies. Such a difference in energy is
spectrally expressed as the mode splitting in rolled-up optical
microcavities.

An asymmetric microcavity rolled from a 40-nm-thick
nanomembrane, with an average refractive index of 1.9, 3.5
windings, and a diameter of 2 μm is used throughout this work.
In this case, the nanomembrane is a square-shaped (22 μm ×
22 μm) piece of dielectric material which after rolling results
in a structure with a total wall thickness of 120 nm on half of the
circumference and 160 nm on the other half. These parameters
are typical for rolled-up microcavities [15,20]. Rolled-up
microcavities can be fabricated so that portions of the structure
are free-standing from the substrate, or lifted off of the sub-
strate using a tapered fiber. Separation from the substrate is
assumed in our calculations. Then, the effective refractive
indices in the thick-wall part, neff,1 = 1.60, and in the thin-wall
part, neff,2 = 1.49, were calculated according to Eq. (2). The
Hamiltonian in Eq. (6) was cast as a function of the phase ϕ1

and the result of this calculation is shown in Fig. 4. The phase
ϕ1 was determined, ϕ1 = 2.50 rad, which corresponds to the
LOSS mode with a minimum energy of eLOSS = 2.1718 eV as
well as the correlating total electric field [see Fig. 4(b)]. The
OSS mode has the phase ϕ1 = 0.92 rad with the maximum
energy eOSS = 2.1746 eV, and a corresponding total electric
field as shown in Fig. 4(b). Altogether, an energy splitting of
2.8 meV at m = 17 is obtained.
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FIG. 4. (Color online) Calculated Hamiltonian U as a function
of the phase ϕ1 (a) and electric fields of the split modes (b). The
electric field plots for the OSS and LOSS modes as determined by
the calculation plotted in (a).
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IV. EFFECT OF A SINGLE NANOPARTICLE
ON MODE SPLITTING

A. Results of perturbation theory

In 2007, intrinsic mode splitting in an asymmetric sphere
microcavity was systematically investigated by means of a
near-field probe technique [13]. It was shown that the energies
of the split modes periodically shift in opposite directions as
the tip of a glass fiber is moved just over the cavity’s surface
along the equator. We expect that the electric fields of the
modes are locked to subtle geometric irregularities in such
a cavity. Due to this locking, the modes can be perturbed
by the probe without causing a redistribution of the electric
fields allowing them to be tuned. Unfortunately, because
irregularities appear randomly, the modes are not locked to
the geometry in a predictable way. This makes prediction of
the shift without probing it impossible.

As mentioned previously, rolled-up microcavities have a
well-defined asymmetry. In addition, the split modes in a
rolled-up microcavity can be calculated based on the coupled-
circular-waveguide model described in Sec. III. Perturbation
theory [32] is therefore applied to predict the shifts of the split
modes caused by the presence of a single nanoparticle on the
resonator surface:

	ω = −ω

2

〈Ez|	n2|Ez〉
〈Ez|n2|Ez〉 , (7)

where n, ω, and Ez are the refractive index, resonant angular
frequency, and total electric field in the rolled-up microcavity
without the nanoparticle, all of which are calculated by the
coupled-circular-waveguide model. 	n is the variation of
the refractive index induced by the nanoparticle. As long
as the size and the position of the nanoparticle are known,
the angular frequency shift 	ω of the split mode can be
calculated. Combining the models based on variation and
perturbation theories, the energy shifts of split modes in
rolled-up microcavities are predictable.

Two major effects of the nanoparticle on the split modes
are pointed out here, illustrated in Fig. 5. First, for a given
azimuthal mode m, the two energies of the split mode
synchronously shift as a function of the angular position of
the nanoparticle. The two components shift periodically with
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FIG. 5. (Color online) Schematics showing the resonant energy
tuning caused by the nanoparticle (a) on the split modes and (b) on
the same split mode at neighboring azimuthal modes. The blue (dark
gray) and red (light gray) patterns indicate the electric fields of the
LOSS mode and the OSS mode.

a phase difference of π [see details in Fig. 5(a)]. Therefore,
only one of the split modes (we take OSS mode) is needed
for angle-resolved nanoparticle sensing purposes. Second, for
neighboring azimuthal modes m and m − 1, the energy shifts
of the same split modes are out of synchronization [see details
in Fig. 5(b)]. This effect will be used to uniquely detect the
single nanoparticle’s angular position.

B. Verification by FDTD simulation

In addition to the analytical models used to calculate the
split modes based on variational and perturbation theories,
FDTD simulations [30] were also performed. These calcula-
tions allow us to ensure that perturbation methods are appro-
priate for our model, and to check that our analytical model
agrees with a more complete depiction of the original rolled-up
structure. In all FDTD simulations, a test nanoparticle having
a diameter of 80 nm and a refractive index of 1.9 was used.
Modes lying in the visible range (m = 16, 17, 18, and 19) were
selected because they are the most useful in optical detection
applications.

It was found that the modes split differently depending
on the nanoparticle’s angular position, which is defined as the
number of degrees the nanoparticle is away from the outer step
in the counterclockwise direction [see Fig. 6(a)]. Figure 6(b)
shows the m = 17 mode in the absence of the nanoparticle and
at two different angular positions. This position-dependent
splitting is in contrast to a symmetric microcavity which,
when a nanoparticle is attached, displays a mode splitting
independent of the angular position of the nanoparticle [6,11].

FIG. 6. (Color online) (a) Electric field profile of the OSS mode
for m = 17. The location of a nanoparticle is defined by the azimuthal
angle θ counterclockwise from the outside step. (b) Spectra for m =
17 in the absence of the nanoparticle, and with the nanoparticle at
two different angular positions. (c) Resonant energies of the LOSS
and the OSS modes as a function of the nanoparticle position.
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The position independence in the symmetric microcavity arises
due to the redistribution of the degenerate split modes, which
are not locked to a particular feature of the structure. Hence,
induced mode splitting in symmetric microcavities does not
contain information about the nanoparticle’s location. In a
rolled-up microcavity, however, the single nanoparticle will
modify the intrinsically split modes as a function of the angular
position. Again, this is because the phase of the split modes is
fixed to the steps in the structure, and the nanoparticle affects
the LOSS and OSS modes to different degrees at a particular
position.

Figure 6(c) shows how the splitting of the m = 17 mode
varies as a function of angular position along the rolled-up
microcavity. The evolution of each split mode exhibits periodic
behavior. Several effects are observed which will be discussed
one by one in the following. First, the magnitude of the modes’
shift is greatest between 180◦ and 360◦. This is the range
of angles corresponding to the thin-wall part of the rolled-
up microcavity where a stronger interaction between the
nanoparticle and the resonant mode is present due to the more
intense evanescent field on the microcavity surface. Second,
the mode shifting oscillates as a function of angular position
with an angular spatial frequency approximately equal to the
mode index m, due to the perturbation of the nanoparticle in
the periodic electric field. In the absence of a nanoparticle, the
electric field distribution is predefined and locked by the steps
in order to minimize the LOSS mode energy as described
above. When a nanoparticle is introduced, it will disturb
the electric field distribution. Due to the periodicity of the
distribution, the nanoparticle will perturb the mode in a
periodic way leading to an angular spatial frequency equal
to the number of antinodes, which is close to the azimuthal
mode index m. Third, the periodic tuning of the resonant mode
energy shows an orthogonal evolution behavior between the
LOSS and OSS modes. For example, the LOSS reaches a
peak energy while the OSS reaches a minimum. Furthermore,
the strongest interaction between the electric field and the
nanoparticle is achieved when the nanoparticle is located at the
antinode of the electric field. It was found that the results of
FDTD simulations are consistent with our analytical models.

V. STRATEGY TO DETECT ANGULAR POSITION
OF THE NANOPARTICLE

As shown in Fig. 6(c), and as discussed above, the LOSS
and OSS components of a mode are directly related to one
another, so use of only one component is sufficient. In addition,
owing to the periodicity of the perturbation or tuning, it is
clear that the angular position of a nanoparticle cannot be
determined by monitoring only a single mode. Therefore a
set of modes must be analyzed to determine a nanoparticle’s
position on the microcavity. Here the resonant energies of the
OSS components of the m = 16, 17, and 18 modes were
selected as shown in Fig. 7(a).

As we mentioned above, the mode energies oscillate as a
function of angular position, with a periodicity related to the
azimuthal mode number, and different azimuthal modes vary
out of sync with each other (see Table I). Parametric plots
of the resonant energies of m = 17 vs m = 18 as well as
m = 17 vs m = 16 as a function of nanoparticle position
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FIG. 7. (Color online) (a) Spectrum showing the mode splitting
in four neighboring azimuthal modes. (b) Parametric plots of the
resonant energies for the OSS mode at m = 17 combined with m =
18 (left) and m = 16 (right). (c) Local details of parametric plots in
(b). The angular positions with an integer degree are depicted by the
circles. The red circle highlights the cross point in the left. Knowledge
of two resonant energies narrows the angular location down to one or
two values. Using a third resonant energy the position is identified.

illustrate this phenomenon, as shown in Fig. 7(b). This lack
of synchronization may be exploited for detection purposes
because it allows position information of the nanoparticle to
be extracted from a set of resonant energies. Detection of
angular position requires that the energies corresponding to
the set of resonant energies should be unique to a particular
position. For example, according to our parametric plots shown
in Fig. 7(c) the resonant energies for the m = 17 and 18 modes
yield possible angular position values of 199◦ or 306◦, while
the resonant energies for the m = 17 and 16 modes could only
correspond to 199◦. In this case, combining the set of modes,
m = 16, 17, and 18, only one angular position is possible.
Thus, by monitoring the resonant energies of three modes
together, the spectroscopic detection of the angular position
of a single nanoparticle on a rolled-up optical microcavity is
demonstrated.
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TABLE I. Fitting results for the simulated resonant energies, which are described by a cosine square function e(θ ) = A cos2(ω̃θ + θ0) + e0.
The subscript 1 (2) indicates the fitting parameter for the case that the nanoparticle is located at the thick-wall (thin-wall) part of the rolled-up
microcavity.

M A1 (meV) ω̃1 θ0,1 (deg) e0,1 (eV) A2 (meV) ω̃2 θ0,2 (deg) e0,2 (eV)

OSS 16 2.06 16.6 22 1.966 2.90 15.4 230 1.965
17 1.95 17.6 28 2.065 2.91 16.4 237 2.064
18 1.84 18.6 10 2.163 2.70 17.4 228 2.162

LOSS 16 2.18 16.6 308 1.961 3.09 15.4 141 1.960
17 1.91 17.6 301 2.061 2.96 16.4 154 2.059
18 1.82 18.6 285 2.159 2.78 17.4 144 2.158

VI. EXTENSION DISCUSSIONS

A. Diameter of the nanoparticle

As long as the mode splitting is periodically tuned by a
single nanoparticle, the strategy to detect its angular position
is available. In the following, the effect of nanoparticle size on
the tuning behavior is studied in the selected angular position
range and the results are shown in Fig. 8.

When the nanoparticle’s size is smaller than 150 nm in
diameter, the split mode is tuned in the same way but with
different amplitude. Such nanoparticles are so “small” that
they can be treated as a perturbation as we discussed above
for the 80-nm particles. We simulated a further increase
of the particle’s size to around 170 nm, which is close to
the half wavelength of the light used. An unstable tuning
behavior (characterized by a tuning periodicity not equal to
the azimuthal mode number) is observed due to strong Mie
scattering from the nanoparticle [33], and we cannot detect
the particle’s angular position using our strategy. This size
is the upper limit for perturbation calculations, which means
that the nanoparticle cannot be treated as a perturbation any
more. However, it is interesting that the periodic tuning behav-
ior reappears when the particle’s size increases further. This
may be due to the redistribution and locking of split modes ac-
cording to the steps as well as the nanoparticle. However, a de-
tailed discussion of this effect is out of the scope of this article.

277265 267 269 271

E
ne

rg
y 

(e
V

)

273 275
2.060

2.061

2.062

2.063

2.064

2.065

2.066

2.067
40 nm
60 nm
80 nm
100 nm
120 nm
140 nm

160 nm
180 nm

200 nm
220 nm
240 nm

Angular position (degree)θ

OSS, = 17m

FIG. 8. (Color online) Resonant energy of the OSS mode at
m = 17 as a function of the nanoparticle position with several sizes
in diameter.

B. Axial confinement

In our analysis above, the microcavity, the electric field, and
the nanoparticle are treated as a two-dimensional cross section.
In three-dimensional space the nanoparticle would actually
be a cylindrical rod. One could expect that the amplitude of
the perturbation of a spherical nanoparticle is negligible in a
cavity without axial confinement so that the proposed scheme
of angular position detection is ineffective. However, this
amplitude depends strongly on the overlap between the particle
and the optical modes so it would be drastically enhanced when
the mode is strongly confined in the axial direction.

Axial confinement and mode splitting have been exper-
imentally demonstrated in a rolled-up microcavity with a
rectangular-shaped lobe structure [15]. Figure 2(c) shows the
axial electric field distribution within the lobe. The effective
length of the confined electric field can be designed and treated
as the length of the lobe Lz. When the axial size of a nanopar-
ticle is comparable to Lz, the effect of the nanoparticle on the
split modes reaches a maximum. Therefore, to achieve max-
imum sensitivity for angular position detection of a nanopar-
ticle with a small axial size, a rolled-up microcavity with a
similar scale of rectangular-shaped lobe structure is suggested.

C. Q-factor requirement

The detection of a single nanoparticle is available only
if the splitting can be resolved in the spectrum. Higher Q-
factor resonance peaks result in better-resolved peak splitting.
Unfortunately, the Q factor is restrained due to the scattering
by the steps and the nanoparticle. A detailed discussion about
the Q-factor limitations in rolled-up optical microcavities has
been reported in our previous work [23]. Here, however, we are
interested in the lowest Q factor required to distinguish the split
peaks which can be estimated by the Rayleigh criterion [34]
by setting the full width at half maximum (FWHM) equal to
the splitting for the two modes. The result is that the Q factor
at the lower limit is about 1300 for the m = 17 mode which
has a minimum splitting of 1.6 meV.

The presence of a nanoparticle on the microcavity will lead
to a degradation of the Q factor due to Rayleigh scattering.
Generally, the degree of the degradation is dependent on the
size and the refractive index of the nanoparticle. However,
in our case, the degradation of the Q factor also depends on
the angular position. A nanoparticle located on the node or
antinode will, respectively, lead to a minimum or maximum
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degradation of the Q factor due to the scattering proportional
to the intensity of the electric field.

VII. CONCLUSION

We have developed an analytical model of rolled-up optical
microcavities, which provides useful insight into the physical
cause of the mode splitting. Our model shows that the LOSS
mode component is locked by the steps in the asymmetric
structure, and that the OSS mode component is orthogonal to
it. The influence a single nanoparticle has on the split modes
was investigated. It was found that the nanoparticle’s angular
position periodically tunes the resonant mode energies with an
angular spatial frequency proportional to the mode number m.
By monitoring the resonant energies of three modes in concert
with each other, determination of angular position of a single
nanoparticle is possible. Based on this strategy, the function-
ality of optical microcavities as a detector is greatly enhanced.
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APPENDIX: DEGENERACY LIFTING IN MICROCAVITIES

Consider a microcavity with a structural inhomogeneity
	n, under a mechanical rotation frequency �, as shown
in Fig. 9(a). The degeneracy of two counterpropagating
components (CW and CCW) is lifted via a backscattering
mechanism caused by ring symmetry breaking (reciprocal
process) [13] and, depending on experimental conditions, a
reciprocity breaking process such as the Sagnac effect [35].

FIG. 9. (Color online) Coupled-modes theory for the pair of
linearly coupled harmonic modes (CW and CCW components) with
(a) a geometric schematic and (b) an eigenfrequency dispersion as a
function of the mechanical rotation frequency �; see Ref. [12].

In the language of coupled-modes theory [12], the Heisen-
berg equation of motion of the complex amplitudes of CW and
CCW components reads

i
d

dt

(
aCW

aCCW

)
= H

(
aCW

aCCW

)
=

(
	 g

g∗ −	

) (
aCW

aCCW

)
,

(A1)

where g and 	 are the coupling and detuning coefficients
caused by the backscattering in the reciprocal and non-
reciprocal processes, respectively. It should be noted that
the matrix H is Hermitian and the coupling is conservative
here [12]. Diagonalization of H yields two normal components
with eigenfrequencies ω = ω0 ±

√
|g|2 + 	2, where ω0 is

the degenerate eigenfrequency in symmetric ring structure
without any mechanical rotation. The eigenfrequency dis-
persion is shown in Fig. 9(b) as function of the mechanical
frequency �.

In the absence of mechanical rotation, reciprocity is
maintained even though the CW and CCW components are
no longer degenerate. We approached this problem using
frequency-domain calculations and found that a split mode
results from components that are standing waves locked into
place by the structure’s geometry. Because the two locked
components have nodes located in different environments
within the geometry, their energies are different.
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