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Abstract

TiO2 is a promising environment friendly, low cost, and high electrochemical performance material. However,
impediments like high internal ion resistance and low electrical conductivity restrict its applications as electrode for
supercapacitor. In the present work, atomic layer deposition was used to fabricate TiO2 nanomembranes (NMs) with
accurately controlled thicknesses. The TiO2 NMs were then used as electrodes for high-performance
pseudocapacitors. Experimental results demonstrated that the TiO2 NM with 100 ALD cycles had the highest
capacitance of 2332 F/g at 1 A/g with energy density of 81 Wh/kg. The enhanced performance was ascribed to the
large surface area and the interconnectivity in the case of ultra-thin and flexible NMs. Increased ALD cycles led to
stiffer NMs and decreased capacitance. Moreover, one series of two supercapacitors can light up one light-emitting
diode with a working voltage of ~ 1.5 V, sufficiently describing its application values.
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Introduction
With the maturation of energy storage technology [1],
supercapacitors have received vast attention due to their
high power density, fast charge-discharge rate, and good
cycling performance [2–4]. Pseudocapacitor is an im-
portant class of supercapacitors, which can deliver at-
tractive high capacitance and energy density compared
with electrochemical supercapacitors [5–7]. In the past
few decades, the transition metal oxides (e.g., RuO2 [8],
MoO2 [9], MnO2 [10], Ni/NiO [11], Co3O4 [12], and
TiO2 [13]) and hydroxides [14–16] were used as classic
electrode materials for pseudocapacitors owing to low
cost, low toxicity, multiple oxidation states [17], and great
flexibility in structures and morphology. However, their
thermal instability, impurity defects, and rate capability are
usually limited by the inadequate conductivity to support
fast electron transport required by high rates. In order to
solve these problems, low-dimensional TiO2 structures
(1D, 2D, 2D + 1D, and 3D) with high surface-to-volume

ratio, good surface structure, great electrical and thermal
stability, favorable energy band gap properties, and high di-
electric constant have been engaged as promising electrode
materials for supercapacitors [18–22]. Especially, we think
that 2D nanomembrane (NM) structures with excellent
flexibility should have great potential in electrode applica-
tions. The thickness control of nanomembrane is therefore
crucial in fabricating functional devices in well-defined
nanoworld [23]. In addition, large-scale manufacturing of
nanoscale materials is also crucial for practical applications
[24]. One may note that atomic layer deposition (ALD) is a
captivating technique used to construct nanodevices
[25, 26]. This powerful technique can deposit thin films
layer by layer with accurate thickness control and can
conformally cover 3D structures with high aspect ratio
[27–30], and the productively can thus be greatly en-
hanced. In the current work, we present the fabrication
of 2D TiO2 NMs with different thicknesses by perform-
ing ALD on 3D porous polymer template with large
surface area [31, 32]. Microstructural characterization
elucidates that the crystal structure of NM is a mixture
of anatase and rutile phases. Electrochemical character-
izations demonstrate that the ultra-thin and flexible
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NMs have the enhanced performance due to the large
surface area and the interconnectivity among the NMs.
The improved ion transportation causes Faradaic reac-
tion on the surface as well as in the bulk [33], resulting
in increased capacitance and energy densities.

Methods
Fabrication of TiO2 NMs
TiO2 NMs with various thicknesses (100, 200, and
400 ALD cycles) were deposited on a commercially avail-
able polyurethane sponge by using ALD technique. Tetra-
kis dimethylamide titanium (TDMAT) and de-ionized
(DI) water were used as precursors in the presence of
nitrogen (N2) gas which served as both carrier and purge
gases. The flow rate of the carrier gas was 20 sccm. A typ-
ical ALD sequence includes TDMAT pulse (200ms), N2

purge (20,000ms), H2O pulse (20ms), and N2 purge
(30,000ms). The precursors used were purchased from
J&K Scientific Ltd., China. The precursor conformally
covered the three-dimensionally porous sponge, which led
to promoted productivity due to the large surface area of
the template [34]. The TiO2-coated sponges were calci-
nated at 500 °C for 4 h in an O2 flow of 400mL/min, and
the template was completely removed. The resultant TiO2

NMs were crushed and cleaned in ethanol, hydrochloric
acid (HCl), and DI water.

Preparation of Electrode
In order to fabricate high-performance supercapacitor,
TiO2 NMs with 100, 200, and 400 ALD cycles were used
as the active material and polytetrafluoroethylene
(PTFE) was used as binder. The contents of TiO2 NMs
and binder were 90 wt% and 10 wt%, respectively. A
homogeneous TiO2 NMs slurry was obtained by mixing
the NMs and binder with a small quantity of ethanol,
and a milling process was engaged. The prepared uni-
form slurry was deposited onto the cleaned nickel foam
and then the sample was degassed at 60 °C for 2 h in
vacuum. In order to complete the electrode fabrication,
the sample was pressed under 10MPa pressure. The
prepared TiO2 NMs electrode was soaked in 1M KOH
solution for 12 h to activate the electrode. The loading
densities of active materials were about ~ 1.5 mg cm−2

for all electrodes. The mass of the TiO2 NMs on nickel
foam was obtained by calculating the mass difference be-
tween the electrode and nickel foam [35].

Microstructural Characterization
The crystallographic structure of the TiO2 NMs was
inspected by X-ray diffraction technique (XRD). The
XRD patterns were recorded by using a Bruker D8A Ad-
vanced XRD with Cu Kα radiation (λ = 1.5405 Å). The
morphology of TiO2 NMs was examined by scanning
electron microscopy (SEM, Zeiss Sigma). The Raman

spectra of the samples were carried out on a Horiba Sci-
entific Raman spectrometer (λ = 514 nm). The elemental
analysis and chemical state of the TiO2 NMs were ob-
tained by using a PHI 5000C EACA X-ray photoelectron
spectroscope (XPS), with C 1s peak at 284.6 eV as the
standard signal. Atomic force microscopy (AFM, Dimen-
sion Edge, Bruker, USA) with tapping mode was used for
surface topography of TiO2 NMs.

Electrochemical Characterization
Three-electrode system was utilized to study the electro-
chemical properties of the TiO2 NMs working electrode
where Ag/AgCl and platinum foil were acted as a refer-
ence electrode and counter electrode, respectively. The
cyclic voltammetry (CV), chronopotentiometry (CP), and
electrochemical impedance spectroscopy (EIS) measure-
ments were accomplished on a Chenhua CHI 660E elec-
trochemical workstation at 25 °C in 1M KOH aqueous
solution. EIS results were obtained over the frequency
range of 100 KHz to 1Hz with an amplitude of 5mV. The
calculation methods of specific capacitances and energy/
power densities are described in Additional file 1.

Results and Discussion
The preparation of TiO2 NMs is shown in Fig. 1a. The
TDMAT and H2O were used as ALD precursors to de-
posit TiO2 on polyurethane sponge template. The reaction
can be described in two half equations as follows: [36]

Ti N CH3ð Þ2
� �

4 þ TiO2−OH�→NH CH3ð Þ2
þ TiO2−O−Ti N CH3ð Þ2

� �
3
�

ð1Þ

TiO2−O−Ti N CH3ð Þ2
� �

3
� þ 2H2O→TiO2−TiO2−OH�

þ 3 NH CH3ð Þ2
� � ð2Þ

The total reaction can be written as:

TiðN C2H6ð Þ4 þ 2H2O→TiO2 þ 4HNC2H6 ð3Þ
The sponge with TiO2 NM coated was then heated to

high temperature. During calcination at 500 °C under
oxygen atmosphere, the polymer template was converted
into CO2 and left the 3D porous NM structure behind
[34]. Crushing this 3D porous structure led to the fabri-
cation of powder-like structure in white (Fig. 1a). The
morphologies of TiO2 NMs with 100, 200, and 400 ALD
cycles were further observed by SEM and are demon-
strated in Fig. 1b–d. We found the lateral sizes of the
NMs with different ALD cycles are typically around tens
of microns. The thickness of TiO2 NMs fabricated in
this work was probed by AFM technique and the results
are presented in Additional file 1: Figure S1. The average
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thickness of TiO2 NMs with 100, 200, and 400 ALD cy-
cles are ~ 15, 34, and 71 nm, respectively. With the in-
crease of ALD cycles, TiO2 NMs is converted into a
thicker and stiffer sheet. The corresponding insets in
Fig. 1b–d demonstrate that the thickness of NMs is
uniform, and some small creases represent the flexibility
of TiO2 NM especially in the thinner cases. The NMs
deposited by ALD can replicate the morphology of the
original substrate (i.e., sponge) and therefore some ir-
regular surface structures in the insets of Fig. 1c and d
may originate from the template or from the calcination
process [37]. Normally, TiO2 has three different crystal
structures: anatase (tetragonal; space group, I41/amd),
brookite (orthorhombic; space group, Pcab), and rutile
(tetragonal; space group, P42/mnm) phases. Here, we
carried out detailed characterization to investigate the
microstructural properties of TiO2 NMs. The crystal
structures of the TiO2 NMs were investigated by XRD,
and the corresponding results are shown in Fig. 2a. The
diffraction peaks are indexed to TiO2 with anatase and
rutile structures (see Additional file 1: Figure S2), indi-
cating the existence of the mixture phase in TiO2 NMs
calcinated at 500 °C. The co-existence of both phases
could be valuable for supercapacitor performance of
TiO2 NMs [30, 38]. Figure 2b further demonstrates the

Raman spectra of corresponding TiO2 NMs, which can
also be used to identify the phases existed in the NMs.
Here, five Raman peaks ascribed to anatase TiO2 are lo-
cated at ~ 142 (Eg), 393 (B1g), 397 (B1g), 513 (A1g), 515
(A1g), and 634 (Eg) cm

−1 [39], and they can be observed
in all three samples. On the other hand, the 445 cm−1

(Eg) peak is connected with rutile phase and can be seen
in all three samples but the Raman peak at 610 cm−1

(A1g) appears only in TiO2 NM with 400 ALD cycles
[40]. The emergence of 610 cm−1 (A1g) peak reflects the
microstructural change, which might be caused by the
insufficient oxygen for the thick NM during heat treat-
ment in oxygen [41]. This indicates that the increased
number of ALD cycles has a remarkable influence on the
crystal structure of the TiO2 NMs, which can be probed by
XRD and Raman spectra shown in Fig. 2. The electronic
configuration of the TiO2 NMs was also studied by XPS
and the results are displayed in Additional file 1: Figure S3.
The results prove the existence of Ti4+ in all NMs
and a small shift of the peaks may be ascribed to the
change in crystal structure as mentioned above. In
order to study the electrochemical performance of the
TiO2 NMs, three-electrode electrochemical system in-
cluding a reference electrode, counter electrode, and
a working electrode was operated. Here, Ag/AgCl was

Fig. 1 Fabrication process and morphologies of TiO2 NMs with different thicknesses. a Sketch represented fabrication process of TiO2 NMs. b–d
SEM images of TiO2 NMs with 100, 200, and 400 ALD cycles, respectively. Scale bars in insets are 1 μm
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served as a reference electrode to control the poten-
tial difference and Pt counter electrode was engaged
as an electron source to transit current towards TiO2

NMs working electrode in the presence of aqueous
electrolyte (1 M KOH solution). It is worth noting
that the functional voltage of supercapacitor depends
on the electrolyte, and aqueous electrolyte with well
electronic conductivity and high dielectric constant
may be helpful in attaining higher capacitance [42]. The
acquired CV and CP curves of electrodes made from TiO2

NMs with 100, 200, and 400 ALD cycles are displayed in
Fig. 3a, b and Additional file 1: Figure S4. One can see that
in Fig. 3a, all CV curves of three electrodes made from
TiO2 NMs with different thicknesses exhibit redox peaks.
The CV curve of pure nickel foam is also plotted for com-
parison, and no obvious peak can be observed. Generally,
the appearance of redox peaks can be associated to cation
interactions on the surface of the TiO2 NMs, and the
interaction can be expressed as: [43]

TiO2ð Þsurface þMþ þ e−↔ TiO2−Mþð Þsurface

where M+ could be H3O
+or K+ in the electrolyte. The

change between different oxidation states of Ti ion sug-
gests its potential as redox electrode material. In re-
sponse of fast surface Farad reaction, the CV curves of
TiO2 NMs exhibit larger areas compared with that of
pure Ni-foam, implying the higher specific capacitance
value of TiO2 NMs. Specifically, one can see the area of
the CV curves decreases with the ALD cycles, suggesting

a decrease of capacitance in the case of thicker NMs, as
will be further proved in following CP results. A reduc-
tion peak at ~ 0.2 V can be clearly observed in all the
electrodes and is associated with intraband gap localized
states [44, 45]. In addition, we also measured CV curves
of electrode made from TiO2 NMs with 100 ALD at
different scan rates, and the results are shown in Fig. 3b.
A redox peak shifting behavior (from higher to lower
potential) is connected with the change in intercalation/
deintercalation of M+ ions and synergetic effect [46, 47].
Briefly, limited diffusion and charge transfer rate at a
higher scan rate lead to corresponding shift [48, 49]. In
order to further illustrate the charging/discharging be-
havior, the galvanostatic charge/discharge curves of TiO2

NMs electrodes at different current densities within a
potential range of 0–0.5 V are shown in Fig. 3c, d and
Additional file 1: Figure S4. The nonlinear curves of CP
represent the pseudocapacitor function, which is consist-
ent with the CV curves, and represent the Faradaic be-
havior. It should be noted that the discharge time of
TiO2 NMs electrode with 100 ALD cycles is notably
prolonged compared with TiO2 NMs electrodes with
200 and 400 ALD cycles, indicating the largest specific
capacitance value. However, ultra-thin NMs electrode ex-
hibit high gravimetric specific activity but cannot afford
large current due to the limited number of active sites
[50]. The extended charging/discharging times of TiO2

NMs electrodes with 100, 200, and 400 ALD cycles at
current density of 1 A/g means that reduction/oxidation
reactions take place (mainly on surfaces of NMs) during
the process, which is the property of pseudocapacitor [51].

Fig. 2 Micro-structural characterizations of TiO2 NMs. a XRD patterns of TiO2 NMs fabricated with 100, 200, and 400 ALD cycles. b Raman spectra
of TiO2 NMs fabricated with 100, 200, and 400 ALD cycles
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Figure 4 (a) shows the specific capacitances of electrodes
made from TiO2 NMs with 100, 200, and 400 ALD cycles
at different current densities ranging from 1 to 5 A/g. Spe-
cific capacitances of 2332, 1780, 1740, 1720, and 1690 F/g
are obtained from TiO2 NMs with 100 ALD cycles, 1660,
1300, 1182, 1104, and 1040 F/g from TiO2 NMs with
200 ALD, and 1094, 848, 732, 672, and 630 F/g from TiO2

NMs with 400 ALD cycles. In previous literature, Yang et
al. [43] prepared the TiO2/N-doped graphene composite
structure with a capacitance of 385.2 F/g at 1 A/g and
320.1 F/g at 10 A/g. Zhi et al. [52] reported a specific cap-
acitance of 216 F/g for TiO2 nanobelts with nitrogen dop-
ing. Di et al. [53] fabricated TiO2 nanotubes decorated
with MnO2 nanoparticles and a specific capacitance of
299 F/g at a current density of 0.5 A/g was obtained. Obvi-
ously, the capacitance of the electrode made from current
TiO2 NMs is much higher. Moreover, the energy and
power density relation of the three electrodes are shown

in Fig. 4b and Additional file 1: Table S1. Energy density is
the capacity of energy storage devices and power density
is their ability to deliver it, and both are the key parame-
ters used to evaluate the electrochemical performance of
supercapacitors. Vividly, when current density increases
from 1 to 5 A/g, TiO2 NMs electrode with 100 ALD cycles
possesses a high energy density of 81–57Wh/kg com-
pared to 59–36Wh/kg of TiO2 NMs electrode with
200 ALD cycles and 38–21Wh/kg of TiO2 electrode NMs
with 400 ALD cycles, while the power density increases
from 250 to 1250W/kg (Fig. 4b). The high performance
might be due to the mixture of anatase and rutile phases
(Fig. 2) as this leads to surface passivation and increased
ion transportation [54–56]. In addition, the enlarged sur-
face area of the TiO2 NMs and interconnectivity among
the NMs also cause the enhancement in ions transporta-
tion. On the other hand, we believe that the decrease in
electrochemical performance with the increasing ALD

Fig. 3 Electrochemical characterization of TiO2 NMs supercapacitor. a CV curves of pure Ni-foam, electrodes made from TiO2 NMs with 100, 200,
and 400 ALD cycles. The scan rate is 10 mV/s. b CV curves of electrode made from TiO2 NMs with 100 ALD cycles, obtained at different scan
rates. c CP curves of electrode made from TiO2 NMs with 100, 200, and 400 ALD cycles. The current density is 1 A/g. d CP curve of electrode
made from TiO2 NMs with 100 ALD cycles, obtained at different current densities
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cycles is mainly due to the decreased NM/electrolyte
interface area if the masses of the active materials are the
same. Moreover, the TiO2 NMs with more ALD cycles
(i.e., thickness) is stiffer and flat (see Fig. 1), and therefore,
the overlap between the NMs is obvious. This may limit
the surface access for electrolyte ions, resulting in dead
volume, high resistance, and reduced capacitance [57]. In
addition, with the increase of current densities, the diffu-
sion rate of electrolyte might not be enough to satisfy the
electrochemical reaction of electrode material, and there-
fore, a decrease of capacitance with current density can be
observed in Fig. 4a [39, 40]. In order to further reveal the
electrochemical properties of the current TiO2 NMs elec-
trodes, EIS characterizations was carried out because EIS
can provide the information about electrode-electrolyte
and electrode internal resistance [58]. Figure 4c dem-
onstrates the EIS results of all three electrodes, and the
horizontal intercept indicates the internal resistance of

pseudocapacitor. It is clearly observed that TiO2 NMs
electrode with 400 ALD cycles possesses high internal
resistance as compared to TiO2 NMs electrodes with 200
and 100 ALD cycles. We consider that the increased re-
sistance of TiO2 NMs electrode with 400 ALD cycles is
mostly by reason of increased NM thickness since the
TiO2 has relatively large resistivity [39, 48]. The TiO2

NMs with 100 ALD cycles exhibits the lowest internal re-
sistance compared with others because the large surface
area allows the better ions passage [59] and flexibility of
thin NM improves the interlayer connection with de-
creased resistivity. All these results demonstrate that thin
TiO2 NMs with high electroactivity are promising elec-
trode materials for high-performance pseudocapacitor. In
order demonstrate the potential application of TiO2 NMs
supercapacitor, four electrodes made from TiO2 NMs with
100 ALD cycles were assembled into two symmetrical
supercapacitors, i.e., each supercapacitor consisted of two

Fig. 4 Performance comparison of TiO2 NMs electrodes. a Specific capacitances of the TiO2 NM electrodes at various current densities. b Ragone
plot of TiO2 NMs electrodes with 100, 200, and 400 ALD cycles. c Nyquist plot of three TiO2 NMs electrodes. d A photo showing that two
supercapacitors in series can lighten up a red LED
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electrodes of TiO2 NMs with 100 ALD cycles. The two
supercapacitors were connected in series and then charged
at 5 A/g current density to 0.5 V. Afterwards, they were
used to light up a red LED (light-emitting diode) with
working voltage of ~ 1.5 V and the LED emitted light for ~
1min (see Fig. 4d and Additional file 2: Video S1). The
cycle stability of the electrode made from TiO2 NMs with
100 ALD cycles was also studied and the results are shown
in Additional file 1: Figure S5. A capacitance retention of
80.98% is observed after cycling at 5 A/g for 40 charge/dis-
charge cycles, suggesting a less interaction of electrolyte
ions with electrode surface after repeated cycles. We believe
that the performance of the NMs electrode might be fur-
ther promoted if the conductivity of the NMs is increased.
With the help of the ALD technique, the conductivity of
the NMs can be increased by fabricating multi-layered
NMs where materials with high conductivity are incorpo-
rated. More works are currently in progress.

Conclusion
In summary, we have fabricated TiO2 NMs for electrodes
of supercapacitor, and the electrochemical performance of
the NMs was studied in detail. The TiO2 NM electrode
demonstrates increased capacitance with deceased NM
thickness. At a current density of 1 A/g, the specific cap-
acitance of 2332 F/g is obtained for TiO2 NM with
100 ALD cycles, and the corresponding energy density is
calculated to be 81Wh/kg. The enhancement of the per-
formance is mainly attributed to the fabrication strategy
and the ultra-thin feature of NMs, because the large sur-
face area and short diffusion path of NMs facilitate ion
transport through electrode/electrolyte interface. The in-
terconnectivity among the NMs also remarkably enhances
the ion transportation in the electrode. We also demon-
strate that two supercapacitors connected in series can
power a LED, suggesting the application potential of TiO2

NMs supercapacitor. The current facile design opens the
way to build NMs electrodes for next-generation wearable
energy storage devices at low-cost. However, for practical
applications of NM-based structures in future supercapa-
citors, further studies are required.

Additional files

Additional file 1: Figure S1. Surface morphologies of ALD synthesized
TiO2 NMs with different ALD cycles: (a) 100 ALD cycles. (b) 200 ALD
cycles. (c) 400 ALD cycles. Figure S2. Crystal structures of TiO2. (a)
Diagram showing the arrangement of atoms in anatase and rutile phases
of TiO2. (b) Standard XRD patterns of anatase TiO2 (JPCDS # 21–1272) and
rutile TiO2 (JPCDS # 03–1122). Figure S3. XPS spectra of TiO2 NMs with
100, 200, and 400 ALD cycles. To calibrate, C 1s peak is used as reference
peak at binding energy of 284.6 eV. High-resolution XPS spectra of (a) Ti
2p and (b) O 1 s. The peaks at ∼464.9 and ∼459 eV is assigned to Ti4+

2p1/2 and Ti4+ 2p3/2 respectively. The peak at 529 eV is assigned to O 1 s.
Figure S4. Electrochemical characterization of TiO2 NMs. (a) and (c) CV
curves of TiO2 NMs with 200 and 400 ALD cycles at different scan rates.

(b) and (d) CP curves of TiO2 NMs with 200 and 400 ALD cycles at
different current densities. Figure S5. Cycle performance of electrode
made from TiO2 NMs with 100 ALD cycles. Table S1. Comparison of
specific capacitance and energy density of electrodes made from TiO2

NMs with different ALD cycles. (DOCX 2102 kb)

Additional file 2: Video S1. Two supercapacitors in series can lighten
up a red LED. (MP4 1136 kb)
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