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   The resonant modes inside the optical microcavities are modelled analytically by the use of Maxwell 

equations. We consider the electromagnetic field propagating with an angular frequency ω, where time 

dependence of the harmonic wave is assumed as e-iωt. It should be pointed out that no magnetic or 

metallic materials is employed, therefore Β
r
≡H
r

and the free current density is neglected ( J
r

=0) in the 

Maxwell curl-field equations; with this, those equations are expressed as 

Β=Ε×∇
rrr

ik           (1) 

Ε−=Β×∇
rrr

2ikn          (2) 

where n is the material refractive index and k=ω/c=2π/λ0, being λ0 the wavelength of the 

electromagnetic field and c refers to the air speed of light. In order to solve the Maxwell equations for 



 S2 

our microtubular system we found a good approximation to treat the rolled spiral shape of the microtube 

as a planar waveguide with two regions (see the regions I and II in Figure S1) corresponding to the 

thicker and thinner part of the microcavity wall. Due to the symmetry of our structure in the z dimension 

(the axis of the tube), it is enough to solve the two-dimensional problem instead of the 

three-dimensional case. Thus the z component of the∇
r

operator is taken as ∂/∂z=0 in eqs. (1) and (2). 

 

 

Figure S1. Cross sectional view of the structural changes of the spiral rolled-up microtube to a planar 

waveguide of two regions with different thicknesses.  

 

   The physical mechanism of the resonance modes comes from an electromagnetic wave propagating 

inside the microcavity wall and interfering constructively with itself after a round trip.1 This condition 

must be adapted to the planar waveguide taking the wave propagating along the y dimension. Then, the 

y dependence of the electromagnetic fields is written by the function eiβy, where β is the propagation 

constant. After a round trip (y=πd) the modes should have the same phase in order to get the 

constructive interference, thus eiβy0=eiβπd. Choosing y0=0 it is obtained that β should satisfy the resonance 

condition: β =2m/d, where d is the tube diameter and m is an integer (azimuthal number).  

   With the previous considerations, the spatial and temporal dependence of the electromagnetic field 

are in the form )(rA rr ≡ )(xA
r

eiβy-iωt where A
r
≡E
r

orΒ
r

. Therefore the components of the eq. (1) are given by 
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xz iki Β=Εβ           (3) 

y
z ik

x
Β−=

∂
Ε∂           (4) 

zx
y iki

x
Β=Ε−

∂

Ε∂
β          (5) 

   In the same way the components of the Maxwell eq. (2) have are given by 

xz kini Ε−=Β 2β          (6) 

y
z kin

x
Ε=

∂
Β∂ 2           (7) 

zx
y kini

x
Ε−=Β−

∂

Β∂ 2β         (8) 

   After eliminating the magnetic field Β
r

 or the electric field Ε
r

 components from the last two set of 

equations, the wave equation for the z component is obtained,  

0)( 222
2

2

=⎥
⎦

⎤
⎢
⎣

⎡
−+

∂
∂

zAkn
x

β        (9) 

where Az≡Ez or Bz. The modes can be classified as TM and TE polarization.1 For the TM polarization 

the z component of the magnetic field is taken as Bz=0, while for the TE polarization the z component of 

the electric field is taken as Ez=0.2 Here, detailed analytic derivation of the TM mode is carried out, for 

the TE case only the final expression is given due to a similar procedure. 

   TM resonant modes. In general, the electromagnetic field must decay exponentially outside of the 

wall and oscillates inside of it; hence the Ez component solution for the wave eq. (9) is, 

x
z e δφ −=Ε cos     for  x≥0     (10) 

)cos( φγ += x     for 0≥ x≥-h     (11) 

)()cos( hxeh ++−= δφγ   for x≤-h      (12) 



 S4 

being φ  a phase factor to be determined later and 222
1

222
2

22 , βγβδ −=−= knkn , where n2 is the 

refractive index of the media surrounding the planar waveguide and n1 is the average refractive index of 

the materials composing the planar waveguide. The Ez component is continuous at the interfaces where 

we assume h as the average waveguide height between the region I and II [see Figure S1] which is 

calculated by  

h = a hI + b hII,          (13) 

where a (b) is the length proportion of region I (region II) in the waveguide and hI (hII) the waveguide 

height at the region I (region II). From eq. (3) the Bx component is also continuous at the interfaces but 

the By component must be revised to satisfy this condition. Using the Ez solution and eq. (4), By is given 

by 

x
y e

k
i δφδ −−=Β cos     for  x≥0    (14) 

)sin( φγγ +−= x
k
i    for 0≥ x≥-h    (15) 

)()cos( hxeh
k
i ++−= δφγδ   for x≤-h     (16) 

   The By component does not immediately satisfy the boundary conditions. The requirement of 

continuity at x=0 and x=-h leads to the following system of equations, 

0cossin =− φδφγ          (17) 

   [ ] [ ] 0cos)sin()cos(sin)cos()sin( =−++ φγγγδφγγγδ hhhh .    (18) 

Combining the last two equations results in the condition  

        2)/(1
/2)tan(
γδ
γδγ

−
=h          (19) 

This transcendent function is solved finding the zeros numerically.  

TE resonant modes. Employing a similar procedure used to the TM case but in this case taking 

Ez=0, the following expression is obtained 
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Solution for the TM modes. The input parameters used for eq. (19) are the microcavity diameter, 

wall thickness, surrounding media refractive index n2, and average refractive index of the waveguide n1. 

First, it is necessary to calculate n1 for our case where we have a bilayer nanomembrane of two different 

materials (nSiO2=1.45 and nSiO=1.55) which is coated on both sides with another material (nHfO2=1.95) 

and with two regions of different heights. The method in literature [3] was employed to calculate the 

average dielectric constant ε (ε =n2) of a bilayer system. The calculated average refractive indices (nI 

and nII) are different for the two regions (I and II, see Figure S1), therefore the final average refractive 

index n1 is obtained by  

n1 = a nI + b nII          (21) 

where a (b) is the length proportion of region I (region II) in the waveguide and nI (nII) the waveguide 

height at the region I (region II). 

 

Table S1. Input parameters to calculate the resonant mode position 

Diameter d  

[µm] 

SiO thickness 

(nm) 

SiO2 thickness 

(nm) 

HfO2 thickness 

(nm) 

Rotations in 

tube wall 

Refractive 

index (water) 

Refractive 

index (ethanol) 

9 8 32 30 1.7 1.33 1.36 

 

The resonant mode position is finally calculated as a function of the mode number m and the change 

of the refractive index which surrounds the optical microcavity, where the input parameters are listed in 

Table S1. In Table S2 the calculated mode positions are listed for the optical microcavity in three 
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different surrounding media, within the wavelength range of 540 nm to 710 nm. For comparison, the 

mode positions from the experimental results and the finite-difference time-domain simulation (FDTD, 

which takes into account more details about the real structure of the optical microcavity) are also listed 

in Table S2, and a satisfactory agreement can be found, which supports the approximations performed 

in our analytical model. 

 

Table S2. Mode positions, in wavelength (nm), from experimental results, FDTD simulation, and 

analytical calculation. 

Dried Experimental 544.50 551.27 558.09 565.44 573.04 580.64 588.24 596.63 605.01 613.65 622.56 631.72
Tube FDTD 545.45 552.06 559.43 566.18 572.80 581.68 588.77 597.04 604.74 613.95 623.43 631.83
n2=1.0 Analytical 542.34 549.24 556.33 563.63 571.14 578.86 586.82 595.03 603.48 612.21 621.22 630.53
Inside Experimental 585.88 594.01 602.65 611.30 620.20 629.36 639.56 648.98 658.92 669.38 681.14 692.63
water FDTD 586.66 595.02 603.50 611.95 620.64 630.57 639.36 649.30 659.25 670.15 680.92 691.86
n2=1.33 Analytical 585.57 593.91 602.51 611.38 620.53 629.98 639.74 649.83 660.26 671.06 682.24 693.83
Inside Experimental 594.53 602.65 611.82 620.72 629.62 639.83 649.25 660.49 671.99 682.18 693.94 705.17
Ethanol FDTD 595.64 604.31 612.92 621.44 630.77 640.85 649.44 659.51 669.90 681.95 693.07 703.55
n2=1.36 Analytical 593.09 601.66 610.50 619.62 629.02 638.74 648.78 659.16 669.89 681.01 692.52 704.44  
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