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An equilibrium phase diagram for the shape of compressively strained free-hanging films is developed by
total strain energy minimization. For small strain gradients ��, the film wrinkles, while for sufficiently large
��, a phase transition from wrinkling to bending occurs. We consider competing relaxation mechanisms for
free-hanging films, which have rolled up into tube structures, and we provide an upper limit for the maximum
achievable number of tube rotations.
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A thin solid film, subject to compressive strain, can either
bend1,2 or wrinkle3–5 if fixed at one end and free otherwise.
Whether the film bends or wrinkles sensitively depends on
the built-in strain gradient across the film thickness. Intu-
itively speaking, if the strain gradient is large, the film bends
into a curved structure, whereas for a small or zero strain
gradient the film forms wrinkles. Interestingly, the competing
mechanisms of wrinkling and bending, as the strain gradient
inside the film changes, have not been quantified so far. This
circumstance is even more surprising since a variety of fun-
damental investigations as well as applications based on
bent1,2,6 and wrinkled3–5,7,8 films have been put forward. The
roll up of a strained film into a cylindrical geometry seems
particularly appealing9,10 since size, orientation, and number
of rotations of a microtube or nanotube become well-
controlled and predictable entities. These virtues have led to
exciting perspectives both in fundamental research11–15 and
also with respect to applications.16–19

In this paper, we perform an energetic comparison be-
tween bent/rolled and wrinkled films, and we generate a
quantitative a priori phase diagram for the formation of bent
and wrinkled structures. Based on these two competing strain
relaxation pathways, we are able to provide an upper funda-
mental limit for the number of film rotations as the free-
hanging film progressively increases in length.

Figure 1�a� shows a schematic of a partially released bi-
layer film consisting of two layers with thicknesses d1 and
d2, which are subject to biaxial strain �1 and �2, respectively.
The film is free hanging over a distance h and is in an unre-
laxed strained state over the whole length L. Experimentally,
the free-hanging film can be fabricated by selectively etching
away a sacrificial layer �as indicated in the figure�,3,9,10 but
other procedures to create free-hanging films are also
possible.4 The released portion of the film is free to elasti-
cally relax, constrained only by the fixed boundary where the
film attaches to the substrate/sacrificial layer. The unreleased
part of the film is still firmly bonded to the substrate/
sacrificial layer. The layers are assumed to have equal isotro-
pic linear elastic properties with Young’s modulus Y and
Poisson’s ratio �. The average strain and strain gradient of
the bilayer are defined as �̄= ��1d1+�2d2� / �d1+d2� and ��
=�2−�1 respectively. The initial elastic energy �given per
unit area� of the film is E0=Y�d1�1

2+d2�2
2� / �1−��.

We consider the initial stage of strain relaxation for the
case ���0 in Fig. 1�b�. The film bends and adapts a uni-
form inner radius R. The energy calculation is performed in a
cylindrical coordinate system �x , t ,r� with the origin at the
outer surface of the bent film in Fig. 1�b�. We adopt the
approach from Ref. 20 to estimate the equilibrium radius and
elastic energy of a film subject to a certain strain gradient.
Since the film is still firmly attached to the sacrificial layer,
and we assume L�R, there is no relaxation in the x
direction21 �plane strain condition in x�. Therefore �xi=�i
with i=1,2 for layers 1 and 2, respectively.

In the tangential direction, the strain can relax by bending
and the final tangential strain can be written as �ti=�i+c
− �r−rb� /R, where c is a uniform strain and rb indicates the
location of the neutral plane, where the bending strain com-
ponent is equal to zero. Since the layers are thin, the stress
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FIG. 1. �Color online� Schematics of �a� free-hanging bilayer
film, �b� bent film with inner radius R, and �c� wrinkled structure
with deflection profile ��x ,y�, amplitude A, and wavelength �. �d�
Wrinkle energy �solid line� and energy of planar relaxation �dashed
line� as a function of h. �e� Wrinkle wavelength �solid line, left axis�
and amplitude �dashed line, right axis� as a function of wrinkle
length h. Vertical dotted-dashed line marks the critical wrinkle
length hcw.
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through their thickness in the radial direction has to be zero
�	r=0� at equilibrium,22 implying by Hooke’s law for the
strain in the radial direction �ri=−���ti+�xi� / �1−��. From
the condition of zero total bending force on the film we
derive rb=d2�1+
� /2 with 
=d1 /d2.

The total elastic energy of the bent film Ebent is calculated
by integrating the elastic strain energy density from the outer
to the inner film surface. By minimizing the energy with
respect to the remaining unknown parameters c and R, we
obtain the equilibrium uniform strain ceq=−��
�1+�2�
/ �1+
� and the equilibrium tube radius Req=�d2 / �6���
�,
where �= �1+
�3 and �=1+�. Subsequently, Req and ceq are
used to calculate the equilibrium minimum elastic energy of
the rolled structure Ebent�Req ,ceq�. This value is normalized to
E0 and will be later compared with the wrinkle energy.

Throughout this paper, we consider a typical bilayer con-
sisting of 10 nm In0.1Ga0.9As with �1=−0.71% and 10 nm
GaAs with �2=0%, and equal Y =80 GPa and �=0.31. For
this case, the equilibrium radius and minimum energy are
Req�1.4 m and 0.43E0, respectively.

For the calculation of the elastic energy of the wrinkled
structure, we extend a previous formulation of a single layer5

to the bilayer film. We parametrize the vertical deflection of
the wrinkle as ��x ,y�=Af�y�cos�kx�, where A is the maxi-
mum amplitude of the wrinkle at the free end �see Fig. 1�c��,
k=2� /� is the wrinkle wave number in the x direction �� is
the wavelength of the wrinkle�, and f�y�= �1−cos��y /h�� /2.
The fixed boundary forces the left side of the wrinkle to be
clamped, i.e., ��x ,0�=0, �,y�x ,0�=0, where the partial de-
rivative is denoted by a comma, and this is satisfied naturally
by our choice of �. The strain ���

�i� and stress 	��
�i� are defined

according to the large deflection �Föppl–von Kármán� plate
theory,22 where � ,�=x ,y. The in-plane displacement ux is
approximated by modifying the result of the in-plane equi-
librium for our shape,23 ux= �k /8��Af�y��2sin�2kx�. The film
is free to move in y, so we take uy =�y �neglecting an x
dependence� with parameter � denoting the magnitude of
relaxation in the y direction. The total wrinkle elastic energy
Ew can be decoupled22 into a stretching energy ES and a
bending energy EB �modified for the bilayer system24�. The
wrinkle energy Ew is averaged over one wavelength, L=�,
and is numerically minimized with respect to A, �, and �.
The interplay between the stretching and bending energies
determines the equilibrium wrinkle periodicity and ampli-
tude.

Our minimum of the total elastic energy is equivalent to
the mechanical equilibrium state obtained from solving the
nonlinear Föppl–von Kármán equations within our class of
shapes.22 It is beyond the scope of this work to calculate the
exact solution from these equations, and a combination of
bent and wrinkled shape might indeed be the accurate shape
obtained by exactly solving the Föppl–von Kármán equa-
tions.

The wrinkle energy as a function of wrinkle length for our
structure is given in Fig. 1�d�. Below a critical length,25 re-
ferred to as the “critical wrinkle length” hcw�2.57d2 /�−�̄,26

energy minimization provides only a trivial minimum4,27 of
the wrinkle energy with A=0 and �→�. This corresponds to
the “planar” relaxation in the y direction only �dashed line in
Fig. 1�d��. For our typical structure, the obtained value of hcw

is about 450 nm and the planar energy is 0.68E0. Beyond
hcw, wrinkling can occur with nonzero amplitude and energy
lower than the planar value. For very large wrinkles, the
normalized wrinkle energy Ew /E0 reaches an asymptotic
value 0.60E0. The amplitude and wavelength of wrinkles are
plotted in Fig. 1�e� and scale as �h0.65�0.05 in the range h
= �1–100� m, similar to the previously reported scaling for
the same structure5 and slightly different from the h0.5 re-
ported for the general wrinkling phenomena.28

The preferable shape of the free-hanging film of length h
is determined by comparing the normalized energy of the
bent Ebent�Req ,ceq� and wrinkle Ew�A ,� ,�� shapes. For our
typical structure, the energy of the wrinkle �0.60E0 to
0.68E0, see Fig. 1�e�� is always larger than the energy of the
bent structure �0.43E0�.

To extend our considerations, we systematically change
�1 and �2 and calculate the favorable shapes as a function of
h and strain gradient, as shown in the phase diagram �Fig. 2�.
The strain gradient �� and etching depth h are varied, while
we fix the average strain to the value of our typical structure
��̄=−0.36%�. The boundary between these two shapes is
shown as a solid line in Fig. 2. For example, for ��
=0.20% and �̄=−0.36%, bending will be favored only until h
is increased to �700 nm. Beyond this length, the wrinkle
becomes the favorable geometry as it acquires lower energy
than the bent structure. If we consider higher average strain,
for example, �̄=−1.0% �dashed boundary in Fig. 2�, the
phase boundary curve moves upward and the wrinkling re-
gion is enlarged.

We can use our model to estimate the maximum number
of rotations Nmax for a film released from the substrate by
progressive underetching.9,10 Consider the tube, which has
already rolled up over some rotations with noninteracting
windings. The tube radius linearly increases with the number
of rotations N �continuous variable� as RN=Req+N�d1+d2�.
We consider an additional portion of the released layer of
length H as outlined in Fig. 3�a�. The film has two pathways

FIG. 2. �Color online� Phase diagram of favorable film shapes
based on the energetic comparison between bent and wrinkled
structures. Solid curve shows the boundary between bent and
wrinkled shapes for our typical structure. Req is shown for the bent
structure and wavelength � for the wrinkled structure. Dashed curve
shows the phase boundary curve for �̄=−1.0%.
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to relax. Either the film continues to roll up with radius RN
�Fig. 3�b�� or forms wrinkles �Figs. 3�c� and 3�d��. These two
processes are energetically compared to calculate the maxi-
mum number of rotations.

When the film of length H is rolled onto the tube with
outer radius R�Req, the energy stored in the layer increases
as the radius increases. For infinite radius the energy ap-
proaches the value of a planar relaxed film. The energy of a
rolled up film as a function of its radius is given in the inset
of Fig. 4.

For the energy of the wrinkled film, the previous formu-
lation needs to be slightly modified. The right wrinkle/tube

boundary �TB� has to be smoothly linked to the tube, i.e.,
��x ,H�=0 and �,y�x ,H�=0, see Fig. 3�c�. As before, the total
wrinkle energy will be compared with the minimum elastic
energy of the rolled up structure. For this wrinkle shape, the
critical wrinkling length is doubled, Hcw=2hcw.

The maximum radius of the outer tube rotation RN=Rmax
is reached when the wrinkle energy of the free-standing film
becomes lower than the roll-up energy �see typical energy
comparison in the inset of Fig. 4�. For this comparison we
take H=3Hcw, since for this length the strain energy is
largely relaxed compared to the planar value �see Fig. 1�d�
for the wrinkle with half size domain h=3hcw�.

The maximum number of rotations is determined by the
relation Nmax= �Rmax−Req� / �d1+d2�. For our typical structure
we obtain Nmax�510, point B in Fig. 4. For a broad range of
strains, the maximum numbers of tube rotations are shown in
Fig. 4. Rolled up films with less than one rotation are ob-
tained for ���−�̄, otherwise Nmax increases rapidly when
the magnitude of average strain is decreased toward zero for
nonzero ��.

We note that �1� altering our assumption on the wrinkle
shape �e.g., from the trigonometric to polynomial function�
and varying elastic constants within realistic values do not
qualitatively change our results. �2� Our theory is valid for
asymmetric bilayers as well, but the phase diagram and the
maximum number of rotations will be quantitatively modi-
fied. �3� For tensile average strain �̄�0, no physical mini-
mum of wrinkling energy exists for our model, consistent
with observations of wrinkles only for compressive strains
near the fixed boundary.3–5,28 �4� In typical experiments the
layer is partially released by selectively etching away a sac-
rificial buffer layer.3,9,10 If the amplitude of the wrinkle be-
comes too large, the film may touch the substrate. In this
case our model does not apply because the film-substrate
interaction energies might be larger than the elastic energy
relaxation through bending and/or wrinkling. The same ap-
plies for ���0, where the film rolls downward toward the
substrate surface.29

For the estimation of the maximum number of tube rota-
tions, we assume noninteracting or only weakly interacting
windings. If the windings are tightly bonded together, the
small increase in H during roll up does not allow a sufficient
length for wrinkling, and thus the number of rotations is not
limited within the framework of our model. Both cases,
tightly bonded12,18 and noninteracting or weakly interacting
windings,30 have been reported in the literature. The number
of rotations might be influenced by certain process param-
eters such as finite fluid flow during underetching. In this
way the maximum number of rotations might be increased if
the fluid flow is applied along the roll-up direction. For short
films, i.e., L�R, wrinkling might not occur due to the full
relaxation in this direction �plane stress�.20 As a result, there
is no limit of the number of rotations within the framework
of our model. Considering H much larger than 3Hcw �which
approaches the saturation wrinkle energy� will lead to a de-
crease in Nmax on the order of 10%.

Systematic experimental data to explore the maximum
number of tube rotations are missing. The maximum re-
ported values of Nmax for In0.33Ga0.67As /GaAs are 30–40
rotations,7,31 about 1 order of magnitude below our predic-

FIG. 3. �Color online� Schematic of the mechanism, which
ceases the roll-up process. �a� A stripe of length H can �b� roll onto
the outer part of the tube or �c� wrinkle, depending on the final
energy of the system. �d� Assumed three-dimensional �3D� wrinkle
profile between fixed boundary �left� and TB �right�.

FIG. 4. �Color online� Contour of the maximum number of tube
rotations Nmax as a function of average strain and strain gradient for
the considered wrinkle length H=3Hcw. The inset shows a compari-
son between the strain energies of roll up and wrinkling for
�̄=−1.0% and ��=2.0% �point A in the diagram�. Point B denotes
our typical strain combination as specified in text. The dashed line
denotes typical strain combinations for bilayers, where only one
layer is compressively strained initially.
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tion Nmax�250 for this system. This might be due to specific
processing parameters present in experiments, for instance, a
misalignment of the rolling direction from the y axis, an
inhomogeneous etching front, and loose rotations.7 There-
fore, the maximum experimentally obtained number of rota-
tions have always been lower than our theoretical estimate.

The phase diagram in Fig. 2 and the estimations of the
number of tube rotations in Fig. 4 can be used as a predictive
tool for the deliberate design of rolled up/wrinkled struc-
tures. Our theory is not restricted to any material and can be
easily extended to multilayer systems.

In conclusion, we have performed an energetic compari-
son between the bending and wrinkling of compressively
strained free-hanging films, and we have drawn the phase
diagram for the preferential shape of the film as a function of
length, average strain, and strain gradient. We have applied

our theory to estimate the maximum number of tube rota-
tions during a roll-up process. We are aware of the limita-
tions of our model, which we have carefully discussed and
taken into account for all interpretations. Our considerations
provide the theoretical framework to fundamentally under-
stand bending and wrinkling of free-hanging films attached
to one fixed boundary. Since such layers have gained sub-
stantial relevance for applications, our work is of practical
interest for many materials and material combinations as
well as for different geometries and length scales.
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