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Technologies for rapid, in vivo assessments of soft-tissue 
biomechanics have potential for broad utility in biological 
research and clinical diagnostics1,2. Of particular interest are 

advanced electromechanical systems that enable precise measure-
ments of mechanical properties of tissues3 to provide diagnostic 
utility, to track responses to treatment and to evaluate small but 
clinically meaningful deterioration for a range of dermatological 
conditions. For example, characterization of soft-tissue biomechan-
ics may guide objective assessments of disease severity for oedema 
associated with lower venous leg disorders4 or scleroderma, a lethal 
rheumatological and dermatological disease that currently depends 
on subjective physician grading scales5. An important focus is on 
the elastic modulus (the relationship between strain and stress) as 
the basis for evaluations of these diseases1. Additional possibili-
ties include tracking of wound-healing cascades and tissue growth, 
regeneration and ageing, each of which involves changes in the elas-
tic modulus of the surface and/or subsurface layers6–9. Conventional 
methods for characterization rely on quasi-static measurements of 
displacement as a function of applied forces delivered via suction, 

torsion, compression or indentation10–15. An alternative known as 
magnetic resonance elastography yields quantitative measurements 
of the elastic modulus, including spatial–temporal maps of tissue 
stiffness16,17. Although useful in many scenarios, these techniques 
involve elaborate set-ups and require trained practitioners, which 
are barriers for their simple, rapid use outside hospital and labo-
ratory settings and for application as direct diagnostic evaluations 
during surgical procedures. Also, in many cases, the necessary tis-
sue interfaces can lead to measurement uncertainties and difficul-
ties in mounting on curved or textured surfaces.

Owing to their miniature dimensions and skin-compatible for-
mats, emerging classes of biointegrated electronic systems may offer 
powerful alternatives18,19. Recent research establishes the use of thin, 
flexible piezoelectric actuators and/or sensors for the characteriza-
tion of soft-tissue biomechanics, with measurements that rely on 
minute deformations of tissues at near-surface regions. Examples 
range from conformal sheets for high-resolution mapping of the 
elastic modulus near the surfaces of skin lesions20 to needle-shaped 
penetrating probes for in vivo mechanical sensing for guidance in 
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Evaluating the biomechanics of soft tissues at depths well below their surface, and at high precision and in real time, would 
open up diagnostic opportunities. Here, we report the development and application of miniaturized electromagnetic devices, 
each integrating a vibratory actuator and a soft strain-sensing sheet, for dynamically measuring the Young’s modulus of skin 
and of other soft tissues at depths of approximately 1–8 mm, depending on the particular design of the sensor. We experimen-
tally and computationally established the operational principles of the devices and evaluated their performance with a range 
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biopsies21, to thin, flexible piezoresistive cantilevers as indentation 
sensors for characterization of cancerous breast tissues3. These and 
other related approaches differ from past technologies in their thin, 
flexible geometries and their ability to form minimally invasive 
interfaces on complex topographies and textures of biological sur-
faces22,23. An important mode of use is in locating and identifying 
aberrant tissues through abnormal elastic moduli that result from 
specific disease states3,20,21,24. In many cases, however, these methods 
focus on sensing only to superficial depths below the surface (that 
is, tens of micrometres or less, typically confined to the stratum cor-
neum or upper layers of the epidermis for the case of skin)20.

This paper presents a simple, miniature electromechanical 
system that can interface with biological tissues for precise, rapid 
evaluations (~1 min for an individual measurement) of their elastic 
modulus, at a range of frequencies and depths and across a vari-
ety of spatial scales, including two-dimensional mapping. These 
devices integrate components for mechanical actuation and sensing 
in a single package, using certain ideas adapted from those used as 
the basis of skin-integrated haptic interfaces for virtual/augmented 
reality25. The resulting capabilities can complement those of recently 
reported approaches for sensing biomechanics at superficial depths. 
The following sections describe the engineering concepts, with a 
focus on measurements of elastic moduli of biological targets aver-
aged over depths that are tunable across the millimetre range (from 
1 to 8 mm). Experimental and simulation studies demonstrate 
quantitative measurements of tissue moduli for a wide scope of cou-
pling substrates and conditions, including bilayer test structures as 
illustrations of depth profiling. Examples range from mechanical 
evaluations of biomaterials (hydrogels) with moduli comparable to 
those of soft human tissues, to samples of skin from animal models, 
to various locations on human volunteers. The results define some 
envisioned applications, including those relevant to clinical evalu-
ations of patients with skin disorders. Advanced versions incorpo-
rate arrays of such devices for large-area mapping of elastic moduli. 
These findings have broad potential for use in exploratory research, 
clinical medicine and at-home diagnostics.

Results and discussion
Materials, designs, integration schemes and performance char-
acteristics. Figure 1a presents a schematic illustration and an 
image of a representative device, which we refer to as an electrome-
chanical modulus (EMM) sensor. The stack comprises the follow-
ing components: (1) a top layer that generates a time-dependent 
Lorenz force as the source for vibratory actuation (Fig. 1b); (2) 
a thin strain gauge in the form of a serpentine metal trace as the 
basis for mechanical sensing (Fig. 1c); and (3) a supporting thin 
elastomeric layer as a reversible, soft interface to a tissue surface. 
The total thickness of this example is ~2.5 mm and the contacting 
area is ~2 cm2 (lower inset of Fig. 1a). The fabrication begins with 
the patterning of serpentine-shaped electrical traces as resistive 
strain gauges, followed by transfer printing onto a soft, flexible 
substrate (poly(dimethylsiloxane) (PDMS), ~30 μm thick). Thin 
gold (Au) lines form an open mesh structure (100-nm thick) to 
define a sensing area of ~0.5 cm2 that is embedded above and 
below by layers of polyimide (1-μm thick), as illustrated in Fig. 
1c,d. A sequence of assembly steps prepares the actuator and 
wired connections for integration with the underlying gauge to 
yield a functional system. The actuator includes a nickel-coated 
neodymium magnet (8 mm in diameter, 1.5-mm thick) mounted 
on a thin polyimide disc (75-μm thick) via a dual-sided adhesive 
and a copper coil on top (Cu, 50-μm wire diameter, 240 turns 
with an outer diameter of 12 mm, electrical resistance of ~70 Ω), 
as displayed in Fig. 1b. Here, the polyimide interlayer provides 
stable mechanics26 that enables the efficient delivery of force from 
the magnet towards the underlying gauge. Detailed information 
is provided in Supplementary Figs. 1 and 2.

As illustrated in the equivalent circuit diagram in the upper 
inset of Fig. 1a, the magnet undergoes vibratory motions follow-
ing the application of an alternating current through the copper 
coil (VA; < 5 V, sine wave, 50 Hz), with a travelling amplitude of 
several hundreds of micrometres (Supplementary Video 1). The 
ring-shaped shell (PDMS, 2.4-mm thick) around the actuator 
defines sufficient space for out-of-plane motions of the magnet. 
The gap of ~1 mm between the coil and the magnet (1.5-mm thick) 
greatly exceeds the amplitude of motion of the magnet to avoid 
direct contact with the top coil during operation. Therefore, the 
vibratory motions of the magnets deliver pressures onto the bot-
tom surface of the sensor due to inertial effects and directed defor-
mations that extend to millimetre-scale depths of tissue. The result 
yields strains distributed over the metal traces of the strain gauge, 
which leads to periodic variations in electrical resistance. Analyses 
of these responses by performing simultaneous measurements of 
the voltage across the strain gauge (output voltage, VS) via lock-in 
techniques allows quantitative determination of the elastic modulus 
of the tissues. Specifically, a constant current (IS) delivered from a 
current source to the strain gauge (Supplementary Fig. 3) provides 
an input channel to the lock-in amplifier to capture the amplitudes 
of periodic variations in the gauge resistance as VS at the frequency 
of the vibration. Supplementary Fig. 4a shows the measurement 
set-up for mechanical sensing on a sample of artificial skin. Existing 
methods for sensing tissue biomechanics at superficial depths 
(micrometre-scale) via the use of piezoelectric actuators/sensors20,21 
serve as a basis for comparison. The devices reported here mechan-
ically couple with contacting tissues through millimetre-scale 
thicknesses, thereby enabling the characterization of deep tissue 
biomechanics at lengths defined by the geometry of the sensor, as 
described below. Information on the measurement mechanism and 
operational principles is provided in Supplementary Fig. 4b.

The sensors are mounted on tissues of interest via a thin layer 
of a soft elastomer (PDMS, 30-μm thick; an example, a forearm, is 
shown in Fig. 1e). Conformal contact occurs via lamination in a 
simple, reversible manner that enables multiple cycles of use (100 
times). Figure 1f shows a device conformally mounted on the curved 
surface of the skin of the fingertip of a volunteer. The adhesive 
strength of the PDMS tape depends on the ratio of the base to cross-
linker in the formulation and the number of cycles of application 
and removal from the skin27. Experiments show that, for sufficient 
adhesion, the adhesive strength does not affect the measurement 
result (Supplementary Fig. 5). As shown in Supplementary Fig. 6a, 
the overall electrical resistance of the strain gauge remains largely 
unchanged, to within experimental uncertainties, after 103 cycles 
of bending into cylindrical shapes. The change in resistance as a 
function of bending radius (to values down to 3 cm) is shown in 
Supplementary Fig. 6b. The observed changes (~0.25%, 2–3 Ω) are 
small compared with the resistance of the strain gauge itself (~1 kΩ) 
and are reversible, consistent with the theoretical expectation28. The 
encapsulation layers (polyimide/PDMS, 1-μm/30-μm thick) isolate 
the system from moisture and biofluids. Specifically, the devices 
offer consistent performance before and after 7 days of immersion 
in artificial sweat solution at 50 °C (Supplementary Fig. 6c). With 
the actuator mounted on top, the devices offer stable measurement 
results on curved surfaces across a range of bending radii (>4 cm; 
Fig. 1g and Supplementary Fig. 7).

These simple designs and fabrication strategies yield reliable 
devices at high yields. Statistical data for the resistance of the strain 
gauge (Rgauge), the device yield and the signal-to-noise ratio (SNR) 
associated with 100 devices are presented in Supplementary Fig. 8. 
The yield corresponds to the percentage of functional devices, and 
the SNR is the ratio between VS and the noise level with a sine wave 
with amplitude, VA, of 5 V at a frequency, f, of 50 Hz in the top actua-
tor, during measurements. Failure most typically follows from frac-
tures in the strain gauge or from disconnections between the wires 
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of the coil in the actuator. These results suggest high levels of unifor-
mity and consistency in device performance (for example, Rgauge of 
~103 Ω, total yield of 96% and SNR of ~40 dB). Although this system 
can be applied to a range of biological tissues, the results reported 
here focus on human skin— from studies of healthy volunteers  
(Fig. 1g) and patients associated with a dermatology clinic—on var-
ious body locations, including curved surfaces of the face, forearm 
and shoulder (Supplementary Fig. 9).

Experimental and computational analyses of the device opera-
tion. For a given VA and f, the magnet responds at the same fre-
quency with an amplitude that depends on the properties of the 
sample and the parameters of the device (Methods). Placing the 
magnet directly above the strain gauge in the device structure maxi-
mizes the amplitude of the measured response and therefore the 
sensitivity (Fig. 2a). Using lock-in techniques, periodic variations in 
the resistances of these traces yield detectable changes in the signal 

with high sensitivity following the application of a constant current 
IS (1 mA). The magnitude of the strain, and therefore VS, depends on 
the elastic modulus and thickness of the tissue. Finite element anal-
ysis (FEA) quantifies the mechanical coupling between the actuator, 
the sensor and the tissues. An example distribution of equivalent 
strain across the gauge structure is shown in Fig. 2a for measure-
ments (VA of 5 V at 50 Hz) on artificial skin substrates (PDMS, 1-cm 
thick) with elastic moduli of 10, 100 and 600 kPa. This range is rele-
vant to human skin and other related tissues. The normalized strain 
in the gauge structure increases by a factor of approximately two as 
the tissue modulus decreases from 600 to 10 kPa, with a correspond-
ing increase in VS. Details of the FEA simulation is provided in the 
Supplementary Information.

The results shown in Fig. 2b and Supplementary Fig. 10 summa-
rize the dependence of the amplitude of the motion of the magnet 
on VA and f during operation on a sample of artificial skin (PDMS, 
3-mm thick, 200 kPa). Here, different weight ratios of crosslinker in 
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the PDMS samples yield various desired moduli for these substrates. 
Independent measurements of the elastic modulus exploit a biosoft 
intender under quasi-static conditions (Supplementary Fig. 11). A 
high-speed camera allows direct visualization of the motions of the 
magnet during operation (Supplementary Video 2) as a means of 
measuring amplitudes as small as hundreds of micrometres (see 
Methods for details). The amplitude increases with VA, with values 
of ~300 μm at a VA of 5 V at 50 Hz (Fig. 2b), and depends on f, with 
a resonance at ~200 Hz (Supplementary Fig. 10), which is consistent 
with results reported in recent publications25. This resonance fre-
quency is associated with the device structure and the mechanical 
properties of the contacting skin, whereby the polyimide disc and 
skin provide restoring force for the periodic vibration of the magnet.

The force generated by the magnet can be quantified. 
Supplementary Fig. 12a presents the strain measurements during 
magnet vibration on different thicknesses of artificial skin (PDMS, 
200 kPa). Here, a thin, flexible piezoresistive force sensor, placed 
between the actuator and artificial skin, serves as a force sensor and 

enables the recording of the periodic force generated by the mag-
net for each condition29. The results presented in Supplementary  
Fig. 12b show that the generated force and associated strain increase 
with the thickness of the tissue. This trend corresponds to an 
increase in the deformation at the measurement interface and a cor-
responding increase in the strain consistent with the results shown 
in Fig. 2g. The force applied to the skin can be increased by applying 
an additional positive direct current bias to VA and by changing the 
sine-wave VA to a square-wave voltage with the same amplitude. The 
former directs force to the magnet and the latter increases the effec-
tive input power to the top coil (Supplementary Fig. 13).

As the alternating current drives the actuators, the force deliv-
ered by the magnet yields a time-domain signal from the EMM 
sensor at the same frequency with an amplitude that depends on 
the mechanics of the tissue. The lock-in technique determines the 
amplitude of the periodic signal, VS. Specifically, this signal can be 
recorded by a bioamplifier (Supplementary Fig. 14) during actua-
tion, with a settling time as small as ~0.3 s (details provided in the 
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Supplementary Information). The amplitude of the signal (that is, 
VS) increases with increasing tissue thickness and decreasing tissue 
modulus (Supplementary Fig. 15), as described below. According 
to previous reports21, the viscoelastic effects of typical biological 
samples are negligible at the relatively low operating frequencies 
explored here (<1,000 Hz), such that measurements can be con-
sidered quasi-static. As such, VS relates to the static modulus of 
elasticity, as per the FEA results. Figure 2c,d presents VS values for 
artificial skin samples with elastic moduli of 10, 100 and 500 kPa 
(3-mm thick) as a function of VA and f. The value of VS increases 
with VA (from 1 to 5 V) and f (from 30 to 110 Hz), consistent with 
the trends in the amplitudes of the motions of the magnet (Fig. 2b 
and Supplementary Fig. 10). Here, samples with a high modulus 
lead to a low strain and therefore a low VS, which is in agreement 
with the FEA results (Fig. 2a). An important engineering consid-
eration is that the coil can create electromagnetic induction effects 
on the gauge during measurements, thus generating some cross-talk 
with VS at high frequencies (~10 μV at 1,000 Hz with VA of 5 V; see 
Supplementary Fig. 16 for details). Decreasing the distance between 
the coil and the strain gauge further enhances the induced voltage 
to levels comparable to those of the sensor signals, adversely affect-
ing operation of the device (Supplementary Fig. 17). Consequently, 
this consideration favours low-frequency operation (<100 Hz; red 
in Supplementary Fig. 16) and a sufficient gap between the coil and 
the strain gauge, where such inductive effects induce voltages that 
are approximately two orders of magnitude lower than those asso-
ciated with the sensor signals. Unless otherwise stated, the subse-
quent studies use a fixed f (for example, 50 Hz) and VA (5 V).

Figure 2e demonstrates that the value of VS decreases with 
increasing modulus (10 kPa to 2 MPa) at various f values (30, 50 
and 70 Hz) for samples of artificial skin with thicknesses of 3 mm, 
each supported by a glass wafer (Supplementary Fig. 11) to simulate 
underlying bones. In the low-modulus regime, the actuator vibrates 
relatively freely, with correspondingly high levels of localized defor-
mation, large strains and therefore large VS. For a high modulus, the 
sample limits the deformations, thereby yielding a small VS. Samples 
with moduli less than 500 kPa (red in Fig. 2e) are of particular inter-
est because they are most relevant to many soft biological tissues. 
Such samples yield a high sensitivity to the output VS (Fig. 2f). 
The experimentally measured (circles) and FEA-simulated (lines) 
VS in Fig. 2f vary consistently with moduli from 10 to 500 kPa. 
Here, increasing the thickness also increases the VS, mostly due to 
decreasing effects of the rigid support (glass wafer) in limiting the 
deformations. These results show good detection sensitivity and 
measurement accuracy across elastic moduli (<500 kPa) relevant to 
those of most soft biological tissues in humans. For example, recent 
publications report skin modulus values in the small strain regime 
that fall within this range1, such as the Young’s modulus of the der-
mis and subcutaneous fat (~200 kPa and ~60 kPa)30,31, which indi-
cates the broad applicability of the EMM device designs reported 
here for measuring skin and tissue stiffness1. The stratum corneum 
and epidermis, which have comparatively large moduli32, can be 
measured via methods based on recently described piezoelectric 
systems20. Figure 2g summarizes FEA and experimental results for 
the thickness dependence of VS for different tissue moduli. The 
thickness effects diminish as the thickness of the target increases 
to values larger than several millimetres, which defines a saturation 
depth (7–8 mm) for the measurements, as demonstrated in Fig. 2g. 
Such characteristic depths can provide measurements across vari-
ous tissue structures such as the surface layers of the skin (typically 
~2-mm thick), subcutaneous fat and even underlying muscle31. As 
shown in Supplementary Fig. 18, the results reveal the dependence 
of VS on the tissue modulus for samples with thicknesses (2 cm) that 
exceed the saturation depth.

An analytical expression can be determined for the output volt-
age VS = f (E, H and VA) in the case of small deformations (equation 

(1)) by fitting the experimental and simulation data (Supplementary 
Fig. 19) as follows:

VS = C (E) tanh
[

(

H
H0

)1/2
]

VA (1)

where the VS is linearly proportional to the input VA (5 V in the 
current experiments) in this regime of small deformations, H is 
the thickness of the target tissue and H0 is the saturation depth. 
C(E) is a dimensionless coefficient that depends on the elastic 
modulus (E) of the tissue (Supplementary Table 1 presents values 
obtained from FEA results). For a given device design, the mea-
sured VS and H (determined by ultrasound) together with equation 
(1) and the values presented in Supplementary Table 1, provide a 
simple yet accurate way to determine the modulus of the target tis-
sue. The dimensionless coefficient C should only depend on the 
non-dimensional, normalized tissue modulus, such as the ratio of E 
to the effective modulus of the device.

Measurements on hydrogels and on porcine and human skin. The 
EMM sensor can characterize the mechanical properties of a range 
of biomaterials and skin regions both ex vivo and in vivo (Fig. 3). 
Recent research shows that hydrogels (poly(ethyleneglycol) diac-
rylate) at different levels of hydration (water concentration) have 
Young’s moduli that span those associated with most soft biologi-
cal tissues in animal models and in humans33,34. Figure 3a presents 
results from samples with various levels of hydration and at a thick-
nesses of ~4 mm (inset of Fig. 3a). The VS increases with increasing 
hydration from 30 wt% to 80 wt%. The results in Fig. 2g show cor-
responding values of the elastic modulus, as in Fig. 3b (blue), that 
range from ~37 kPa to ~1.5 MPa, which is consistent with the values 
(green in Fig. 3b) obtained using a biosoft indenter. This technique 
enables a quantitative analysis of the Young’s modulus within the 
elastic regime via measurements of indentation force as a function 
of displacement (that is, strain)35. Similarly, Fig. 3c shows results 
obtained with samples of abdominal porcine skin (2-mm thick; 
inset of Fig. 3c). Here, increasing the hydration level to 40 wt% 
yields a VS of ~34 μV. The comparisons are quantitatively consistent 
with measurements using the indenter for each hydration level, cor-
responding to a range from 95 kPa to ~1 MPa (Fig. 3d).

Dynamic mechanical analysis (DMA) represents another 
conventional technique for determining the Young’s moduli of 
biological tissues through measurements of quasi-static, tensile 
stress–strain responses36. The results in Supplementary Fig. 20 sum-
marize measurements of porcine skin via DMA at different hydra-
tion levels (from 10% to 40%). The results are in good agreement 
with those obtained using the EMM devices. Details on the prepa-
ration steps and measurement results are provided in the Methods. 
As a comparison, Supplementary Fig. 21 summarizes the mea-
surement results on different types of ex vivo targets, including an 
artificial-skin model (PDMS), a sample of porcine skin (hydration 
level of 25%) and a sample of porcine muscle, with comparisons of 
measurements performed using EMM devices on standard samples 
to those obtained with conventional ex vivo testing methods. These 
three methods yield consistent results.

Capabilities extend to direct measurements of skin at various 
locations of the body of human volunteers, as illustrated in Fig. 3e. A 
collection of photographs illustrate applications across main regions 
of the body (for example, biceps, abdomen, thigh and forearm). 
The repeatability of measurements at a specific location represents 
an important metric. Results of multiple cycles of measurement 
from the forearm (Fig. 3f; that is, ten times) show that the average 
and standard deviation of VS are 47.5 μV and 0.8 μV, respectively.  
The inset of Fig. 3f shows that the noise decreases with the square 
root of averaging time for an individual measurement (that is, 
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integration time, t; the duration of a measurement operation that 
yields the value of VS). As an example, increasing the integration 
time from 1 ms to 10 s decreases the noise from ~1 μV to ~10-2 μV, 
approximately two orders of magnitude smaller than the signal. As 
a result, the devices allow short measurement times (<1 min) and 
low noise levels.

Furthermore, the devices operate well on both hair-bearing and 
hairless areas of the skin (Supplementary Fig. 22) due to the ability 
of the bottom PDMS-encapsulated component to conform around 
isolated hair filaments. Curved surfaces of the skin have only a 
minor influence on measurements for radii of curvature larger 
than ~4 cm (for example, two times larger than the diameter of the 
device; Supplementary Fig. 7a,c). Failures in measurements can, 

however, occur in extreme conditions (for example, the curvature 
associated with the nose bridge or hair associated with a beard) due 
to poor contact (Supplementary Fig. 7b).

The measurements depend on the tissue modulus (Fig. 2f) and, 
in certain cases, on the thickness of this tissue and the modulus of 
the underlying materials (Fig. 2g). For example, measurements at 
soft-tissue locations (that is, the abdomen) can be different from 
those at bony regions (that is, the finger joints)37, as shown experi-
mentally in Supplementary Fig. 23. These effects can be treated 
explicitly by accounting for the depth of penetration of the mea-
surement and its dependence on features of the device design. As 
a comparison, each location shown in Fig. 3e includes the skin, 
superficial fat and underlying muscle tissues, with a total tissue 
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thickness that exceeds the characteristic depth of the device38–40. 
The measurements determine the average elastic modulus of the 
skin/tissue to a depth of ~8 mm, as previously demonstrated in  
Fig. 2g. Studies that do not consider this thickness effect involve 
elastic moduli measurements at different locations on the body 
from five healthy volunteers aged between 25 and 32 years and five 
participants aged between 60 and 68 years (Fig. 3g; determination 
of the modulus values rely on results in Supplementary Fig. 17). The 
results are within expected values for human skin and ex vivo bio-
materials determined in the small strain regime using techniques 
based on suction11,12, torsion13 and indentation10. Consistent with 
expectation and recent reports2, the moduli increase with age, typi-
cally due to a loss in hydration41 (Fig. 3b,d). Detailed information 
for these clinical tests is provided in the Methods. The modulus can 
also depend on tension in the skin due to nonlinear mechanical 
responses associated with collagen and elastin fibres in the dermis42. 
Skin tension typically decreases with increasing age2, thereby reduc-
ing the apparent modulus43. Additional studies (Supplementary  
Fig. 24) involved participants with a high body–mass index (BMI; 
typically 30–35 kg m−2) and those with a low BMI (19–24 kg m−2), 
with five participants in each group. The EMM signals are higher 
for the former than for the latter group, as might be expected due to 
higher levels of subcutaneous fat (thickness from a few millimetres 
to centimetres and modulus of ~50 kPa)30,44.

Muscle activity can also affect the moduli measured across 
depths associated with the devices reported here. An example in 
Fig. 3h shows a device on the forearm in a relaxed state and in a 
tensed condition due to lifting a dumbbell. Repetitive cycles of 
movements during real-time recordings of VS yield moduli values 
that vary continuously between minimum and maximum values of 
205 kPa and 320 kPa, respectively (details of dynamic measurements 
are provided in the Methods). These values correspond to average 
moduli of the skin and underlying muscles to a characteristic depth 
of ~8 mm. Recent studies based on ultrasound elastography report 
muscle moduli that exhibit a similar trend with increasing intensity 
of activation (for example, the modulus of biceps muscles increases 
by ~100 kPa due to activation)45. Supplementary Fig. 25 summarizes 
results of measurements on the forearm and thigh for a volunteer 
while standing, sitting and lying down. The signals do not depend 
on posture and they yield elastic moduli that are consistent with 
those described in other papers45,46. Such capabilities may support 
various applications of the devices in kinesiology and rehabilitation.

Results obtained from patients with skin diseases in clinical set-
tings are presented in Supplementary Figs. 26 and 27. These mea-
surements reveal localized variations in skin moduli associated with 
lesions. An artificial-skin model (Supplementary Fig. 26a,b) for this 
case combines a low-modulus silicone substrate (8-mm thick, 5 cm 
in diameter) as healthy skin (~100 kPa) with a local high modulus 
silicone insert in the centre (1 cm diameter, ~500 kPa) as the lesion. 
Measurements of the modulus in the central region and nearby sur-
rounding parts yield expected results (Supplementary Fig. 26c). 
Evaluations of five patients (aged 28–37 years) with psoriasis dis-
tributed across various body regions (arm, hand and lower back) are 
presented in Supplementary Fig. 27 (details are in the Methods). This 
condition leads to lesions comprising red patches of thick, scaly skin 
(over 1 cm in diameter) and pathological changes in skin properties, 
such as thickness, stiffness and hydration47,48. An adhesive medical 
dressing placed over the structure and onto adjacent skin prevented 
relative motion during evaluations. The measurements yield modu-
lus values for the lesions and for nearby regions of unaffected skin 
(Supplementary Fig. 27b,d,f) for each location. As expected, the 
lesions exhibit higher moduli than those of nearby skin, due pri-
marily to differences in skin elasticity and hydration49. These simple 
measurements, consistent with previously reported results1, have 
potential clinical application in rapidly identifying and targeting  
of skin lesions, with quantitative metrics that have promise as  

diagnostic biomarkers for a range of skin conditions. Supplementary 
Table 2 summarizes different types of skin/tissue disorders and cor-
responding lesion mechanics compared with healthy conditions, 
assessed using various measurement methods20,21,50–52. The patholo-
gies range from systemic sclerosis to oedema and tissue diseases 
such as hepatocellular carcinoma, all of which involve variations in 
the elastic modulus of the lesion area compared with those of healthy  
skin/tissues. Overall, most of the diseases presented in 
Supplementary Table 2 involve lesion modulus values that span 
across the range measurable via the EMM sensors with high  
sensitivity (10–500 kPa; Fig. 2f).

Although EMM sensors provide powerful capabilities for a pre-
cise, rapid evaluation of tissue biomechanics, a potential limitation 
is that the system reported here involves benchtop lock-in detection 
electronics. Ongoing efforts focus on the development of a com-
plete wearable system to allow continuous monitoring of skin/tis-
sue properties during daily life activities. A device design concept 
to address these requirements is provided in Supplementary Fig. 28, 
based on adapted versions of wireless methods used for other pur-
poses25. Briefly, a signal processing technique and a microcontroller 
can replace the lock-in detection electronics, and a wireless com-
munication module can allow communication with a portable con-
sumer electronic device (that is, a smart phone). The overall system 
design exploits a flexible printed circuit board (~1-mm thick) that 
can be configured into a wearable format. Additional details appear 
in the Supplementary Information.

Miniaturized designs for multilayer biological targets. In addi-
tion to measuring the elastic modulus to relatively large depths 
(over 8 mm), the lateral dimensions of the devices can be reduced, 
guided by computational modelling, to reduce these depths to val-
ues approaching those of the dermis (~1 mm). In this context, the 
size of the magnet enables the evaluation of tissue moduli across a 
tunable characteristic depth, with capabilities for depth profiling of 
deep and superficial tissue biomechanics. As an example, Fig. 4a  
summarizes devices that have sensing areas (surface area of the 
magnet) with diameters (D) from 8 mm to 1.5 mm, all with magnets 
that have the same thickness (1.5 mm). Figure 4b shows experimen-
tal (circles) and simulated (lines) FEA results for VS from devices 
with different D (3 mm and 1.4 mm) on a single, thick layer of arti-
ficial skin (PDMS, 2-cm thick) as a function of the elastic modulus. 
Here, reducing D decreases the contact area between the device and 
skin, which in turn leads to decreases in VS for a given f (50 Hz) and 
VA (5 V). Figure 4c shows the cross-sectional strain distributions 
obtained by FEA in a sufficiently thick tissue with an elastic mod-
ulus of 200 kPa subjected to pressure on the surface from devices 
with different D. The distributions exhibit saturation depths (red 
lines in Fig. 4c) that decrease with D (that is, ~8.2 mm for D = 8 mm, 
~3.3 mm for D = 3 mm and ~1.6 mm for D = 1.5 mm), which is con-
sistent with the experimental results (Fig. 2g and Supplementary 
Fig. 29). These results suggest the basis for depth profiling of the 
modulus, which is of relevance for many types of biological tissues.

Furthermore, combining the measurement results of two devices 
with an appropriate D allows determination of the modulus of each 
layer for a bilayer structure. For skin, the stratum corneum, epider-
mis and upper dermis (typically 1–2-mm thick) serve as protective 
barriers against environmental hazards for subcutaneous tissues 
that consist of superficial fat and connective muscles over bones. 
These layers exhibit different moduli and thicknesses. Figure 4d 
presents a bilayer architecture of silicone materials that approxi-
mates the structure of skin/tissue, fabricated with different thick-
nesses (HA = 1.8 mm; HB » 1 cm) and different moduli (EA = 200 kPa; 
EB = 50 kPa). Measurements using devices with different D can deter-
mine the equivalent mechanical properties of this bilayer structure. 
Here, VS is 30 μV and 20 μV for devices with D of 3 mm and 1.5 mm, 
respectively. These VS values depend on both the sensing area (D) 
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and the modulus of each layer. Figure 4e shows the results of FEA 
simulation of VS for layer moduli in the ranges of EA = 100–300 kPa 
and EB = 10–100 kPa, with different EMM sensors (D of 3 mm and 
1.5 mm). For VS = 30 μV and D = 3 mm, the simulated relationship 
between EA and EB, marked with the red curve, appears in the left 
of Fig. 4e. Similarly, for VS = 20 μV and D = 1.5 mm, the relationship 
between EA and EB, marked with the black curve, appears in the right 
of Fig. 4e. The intersection of these two curves determines the cal-
culated modulus for each layer as 198 kPa and 52 kPa for EA and EB 
(Fig. 4f), respectively, which are in excellent agreement (within 5% 
error) with the moduli of the sample in Fig. 4d. The above results 
depend on the thickness of each layer of tissue. For typical bilayer 
structures, a database for layers with different thicknesses can be 
used to determine the moduli of such bilayer structures.

To showcase this multilayer capability in clinical practice, Fig. 4g 
summarizes the results of moduli measured on the cheek areas and 
fingertip joint (near the nail plate) in human participants (details 
in Supplementary Fig. 30). As an example of the former, literature 

reports indicate that the combined thickness of the epidermis and 
dermis is ~1.8 mm in the cheek region53, and that other tissues 
(that is, superficial fat and muscle) appear beneath the dermis. 
Measurements using devices with D of 3 mm and of 1.5 mm yield VS 
values of 28.7 μV and 19.3 μV, respectively, on the cheek. By utilizing 
the simulation curves of VS for both cases from Fig. 4e and locat-
ing the intersection point as in Supplementary Fig. 30a, the cheek 
moduli are 248 kPa for the skin layer with a thickness of 1.8 mm and 
59 kPa for inner tissues (blue in Fig. 4g). These measured moduli are 
consistent with values reported for the cheek region31 and associated 
superficial fat in humans30.

In addition to body areas such as the cheek, which has a com-
paratively large tissue thicknesses, measurements on regions where 
bones lie near the surface (for example, hand joints and the fingertip 
dorsum), where the tissue structure is thin, are of particular interest 
in clinical diagnosis and treatment of dermal pathologies such as 
scleroderma5. As an example, consider a simple estimate of the com-
bined thickness of skin and tissues (~3 mm; ~2 mm for the skin and 
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~1 mm for the underlying tissues) in the fingertip joint near the nail 
plate of a volunteer37 (Supplementary Fig. 31). Measurements with 
the EMM sensors yield VS values of 27.1 μV (D = 3 mm) and 18.2 μV 
(D = 1.5 mm), corresponding to modulus values of 316 kPa for the 
skin layer and 67 kPa for inner tissues at this region of the body (red 
in Fig. 4g and Supplementary Fig. 30b). These results agree with 
those determined using conventional approaches30,31. Such findings 
demonstrate that a combined set of EMM sensors with appropriate 
D allows modulus characterization for multilayer biological targets 
with different thicknesses, across a wide range that involves not only 
bulk geometries (deep tissue scale) but also near-surface regions 
(superficial depth).

Compared with measurements that rely on large magnets for 
deep-tissue biomechanics (characteristic depth of ~8 mm), the min-
iaturized design yields information on skin mechanics with a focus 
on the near-surface structure (characteristic depth of ~1.6 mm). 
Measurements at such depths are relevant to many types of skin 
lesions (typically located within ~2-mm depth in skin), extending to 

clinical evaluations presented in Supplementary Fig. 27. Specifically, 
variations in this near-surface modulus between lesion regions and 
unaffected skin are larger than those associated with measurements 
at greater depths, as shown in Fig. 5. Results from the arm, hand 
and back of patients with psoriasis (Fig. 5a,c,e) indicate near-surface 
modulus variations of ~110 kPa in each location (Fig. 5b,d,f), which 
are approximately two times larger than those measured at greater 
depths, using the initial device design (8-mm-diameter magnet 
design; Supplementary Fig. 27).

Interconnected arrays of devices for spatial mapping of the  
modulus. Multiple EMM sensors can be used separately, as 
described above, or they can be configured into arrays, as show in 
Fig. 6. Here, Fig. 6a presents a photograph of a collection of strain 
gauges printed onto a polymer substrate before interconnection 
(fabrication procedures described in the Methods), highlighting 
the mechanical flexibility (Supplementary Fig. 32) of the array for 
wrapping areas of interest across the body, as shown in Fig. 6b (the 
back of a male volunteer, aged 32 years). Figure 6c presents a sche-
matic illustration of a 4 × 4 array of this type (4 columns, 4 rows, 
area of ~100 cm2, thickness of ~2.5 mm) after assembly of vibratory 
actuators (Supplementary Fig. 33). Figure 6d summarizes an equiv-
alent circuit diagram of the system. Interconnection to multiplexers 
allows rapid readout of signals from each unit cell in a time sequence 
controlled by a data acquisition (DAQ) system that features a mini-
mal number of addressing wires, with capabilities for defining the 
frequencies and amplitudes of input voltages to each EMM sensor 
via a function generator as a power supply (Supplementary Fig. 34). 
Details are provided in the Supplementary Information.

The resulting multiplexed system can perform fast mapping of 
elastic moduli on curved, soft surfaces of tissues under quasi-static 
conditions. As an example, Fig. 6e shows results from measurements 
of elastic moduli across the back (Fig. 6b) during relaxed (left) and 
tensed states (right) associated with muscle contraction. Here, the 
actuator array (50 Hz, 5 V sine wave) produces signals from the 
underlying gauge array. Each unit cell corresponds to an elastic 
modulus value determined from an individual EMM sensor with a 
corresponding spatial resolution of ~1.5 cm2. Stretching the trape-
zius muscle (red frame in Fig. 6e) of the back in the tensed condition 
(right of Fig. 6e) leads to spatial variations of increased moduli asso-
ciated with activation of this targeted muscle group. Specifically, the 
average modulus for the tensed condition corresponds to ~430 kPa 
compared with ~310 kPa for the relaxed state, which is consistent 
with expectations and recent literature54. These results indicate the 
potential application of multiple devices in different directions and 
positions for measuring gradient feature of tissues with distributed 
lesion regions. Challenges, however, remain regarding high spatio-
temporal resolution and scalability for precise measurements.

outlook
We have established the materials, device designs and integration 
schemes for a biointegrated electromechanical system that can per-
form accurate, mechanical characterization of soft biological tissues 
in a noninvasive and rapid manner. Detailed experimental and sim-
ulated investigations highlight the various features of device opera-
tion with a wide range of soft biomaterials and multilayer samples 
and at various locations across the human body under different 
conditions. Careful design of the device and integration of arrays 
of sensors support evaluations of depth-dependent properties and 
spatial mapping, respectively. These findings potentially form the 
basis for routine monitoring of variations in elastic moduli for the 
diagnosis and treatment of various disease states and are appli-
cable to nearly all parts of the human body. Particularly promis-
ing opportunities lie in dermatology, where the data produced by 
these devices can assist in diagnosis, treatment tracking and disease 
monitoring, as well as in aspects of aesthetic dermatology and of 
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the recovery from surface wounds. Additional possibilities are in 
the evaluation of the mechanical properties of the skin in a variety 
of physical conditions, with an emphasis on age dependence2 and 
on the relationship between biomechanics and functionality41. The 
results may serve as predictors of the potential for reactions of the 
skin to ageing, hydration loss and associated disorders, and could 
further establish the role of the skin in defining health status. Future 
work might also include efforts in advanced materials and designs 
for improved sensitivities, in engineering systems as wearables for 

the continuous monitoring of patients during daily activities and in 
approaches for obtaining precise measurements of gradient features 
of tissues with high spatiotemporal resolution spanning the area of 
a single device by exploiting measurements across different arms of 
the filamentary serpentine design of the strain gauge.

Methods
Fabrication of sheets of strain gauges. As shown in Supplementary Fig. 1, the 
fabrication began with the formation of isolated strain gauges on a 4-inch silicon 
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wafer (100 mm in diameter, 500-μm thick; University Wafer) or a glass wafer 
(1-mm thick; VWR Vistavision). After cleaning the substrate surface via RCA 
processes, a thin, spin-cast film of PMMA (~500-nm thick; MicroChem) served as 
the sacrificial layer on the substrate and support for a spin-cast layer of polyimide 
(1-μm thick; PI-2545, HD MicroSystems). Electron-beam evaporation of Cr/Au 
(5/100 nm) and photolithographically patterning defined the electrical traces and 
sensing regions, with simple fabrication steps at high yield. The serpentine patterns 
of the traces also improved the fabrication yields. A second layer of polyimide 
(1-μm thick) encapsulated these features. Photolithography and reactive ion 
etching with O2 isolated the devices into an open mesh structure (Supplementary 
Fig. 3). Subsequent processing released the gauge array from the handle wafer 
by immersion into acetone for 18 h to remove the sacrificial layer of PMMA. 
Transfer printing via a water-soluble tape (Grainger), followed by deposition of 
adhesive layers (Ti/SiO2, electron-beam evaporation, 5/50-nm thick), allowed 
delivery of selected sets of devices from this array onto a foreign substrate coated 
with thin layers of PDMS (~30 μm; Sylgard 184, Dow Corning). Here, ultraviolet 
ozone (UVO) treatment of the surfaces of the devices and the top surfaces of the 
PDMS enabled strong bonding on contact. Peeling the material stack from the 
temporary substrate yielded a piece of flexible electronics as the basis for the strain 
gauges with excellent mechanical properties (Supplementary Fig. 5a). Detailed 
information on the fabrication processes and the transfer-printing technology is 
provided in Supplementary Fig. 2a, with a cross-sectional view of the strain gauge 
with a thickness of ~32 μm. Fabrication of multiple gauges and repetitive transfer 
printing onto a large-area layer of PDMS formed an array of such devices (Fig. 6a).  
Subsequent external wire connections relied on flexible cables and heat-seal 
connectors (Elform) to printed circuit boards for measurements, as shown 
Supplementary Fig. 4.

Assembly with vibratory actuators. Assembly of the vibratory actuators onto 
these gauges completed the integration to yield components with capabilities for 
measuring the elastic modulus. Procedures for assembly of the vibratory actuator 
exploited schemes described elsewhere26. Briefly, the first step involved immersing 
a Cu coil (wire diameter of 50 μm, 240 turns, with an inner diameter of the coil 
of 2 mm and an outer diameter of 12 mm; Yisu Electronics) into a layer of PDMS 
(diameter of 18 mm, 200-μm thick; 10:1 weight ratio of crosslinker) with the ends 
of the wire exposed to allow for external connection. The structure was then cured 
at 70 °C overnight. Next, the ring-shaped PDMS shell was cut into a suitable size 
(inner and outer diameter of 12 mm and 18 mm, respectively, 2.4-mm thick) and 
then bonded onto the coil–PDMS structure via a commercial adhesive (Kwik-Sil, 
World Precision Instruments). In parallel, a nickel-coated neodymium magnet 
(8 mm in diameter, 1.5-mm thick) was mounted on the centre of a polyimide 
disc (18 mm in diameter, 75-μm thick) with a strong dual-side adhesive (Kapton, 
DuPont). Carefully aligning the coil–PDMS ring and magnet–polyimide disc 
yielded a vibratory actuator, bonded together with a silicone adhesive applied 
on the contacting area (Kwik-Sil, World Precision Instruments). The final step 
involved deposition of a layer of SiO2 (electron-beam evaporation, 100-nm thick) 
on the bottom surface of a polyimide disc across the ring-shaped area only  
(Fig. 1a). UVO treatment of the bottom surfaces of the actuator (polyimide-disc 
side) and the top surfaces of the fabricated gauge led to a strong bonding interface 
on contact to complete the assembly of the actuator and gauge. Detailed information 
for the assembly of the actuator and integration with the strain gauge is presented in 
Supplementary Fig. 2b, with a cross-sectional view with total thickness of ~2.5 mm. 
In this manner, the magnet of the actuator can vibrate in an out-of-plane direction 
in the ring-shaped PDMS shell, yielding pressure on the contacting tissue. The 
resulting overall system can directly laminate onto curved surfaces in intimate 
contact, with stable measurements, as shown in Supplementary Fig. 7.

Measurement set-up and operational principles. The measurement set-up 
included two areas of focus: the actuation and the sensor (schematic illustration 
shown in Supplementary Fig. 4). For quasi-static measurements, an output 
channel from a lock-in amplifier (SRS SR830, Stanford Research) was connected 
to the coil of the EMM sensor to deliver a sine-wave voltage (VA, ± 5 V) with 
well-defined frequency and amplitude. The resultant current through the coil 
generated magnetic fields and associated time-dependent Lorentz forces to drive 
actuation and vibration of the magnet mounted on the thin polyimide disc. The 
result yielded a mechanism for imparting pressure onto the contacting tissues 
(Supplementary Fig. 12). The associated deformation of these tissues yielded 
strains distributed over the metal traces of the gauge. These responses allowed 
determination of the elastic modulus of the tissue. A constant current delivered 
from a current source (Keithley 6221, Tektronix) to the strain gauge (IS) provided 
an input channel to the lock-in amplifier to capture the amplitudes of periodic 
variations in the resistance of the strain gauge as a sensing voltage (VS) at the 
frequency of the vibration. Similarly, for dynamic measurements, a DAQ system 
(National Instrument) interfaced by wired connections to the sensor captured 
dynamic recordings of VS at a sampling frequency of 5 Hz during actuation  
of the system.

Procedures for bending tests and soak tests. EMM sensors can establish 
gentle interfaces to soft, curved biological tissues, with capabilities of stable 

electrical performance during immersion in biofluids. Bending tests are shown 
in Supplementary Fig. 7, where the systems intimately couple onto cylindrical 
substrates of artificial skin layers (PDMS, 200 kPa) with different curvatures, 
all with a characteristic depth of over 8 mm at the contacting location. The 
value of VS remained unchanged at bending radii ranging from 4 cm to infinity 
(Supplementary Fig. 7) due to the neutral mechanical plane at the tissue interface.

Soak tests involved electrical measurements of devices during immersion in 
artificial sweat solution (pH 4.5, Pickering Laboratories) at elevated temperatures 
(50 °C). During the tests, the gauges, consisting of a trilayer structure of polyimide–
metal traces–polyimide (1-μm–100-nm–1-μm thick), were mounted on a thin 
layer of PDMS with a weight ratio of crosslinker of 40:1. A thin, waterproof 
layer of Tagederm film (3M) encapsulated the front side the device, as shown in 
Supplementary Fig. 6c. Measurements demonstrated stable electrical performance 
during 7 days of immersion.

Preparation of artificial skin samples. Drop casting thick layers of PDMS with 
various thicknesses in a glass Petri dish formed artificial skin samples for purposes 
of validating the device operation (Supplementary Fig. 11a). These PDMS 
samples (area of 5 × 5 mm2) involved different weight ratios of crosslinker to base, 
ranging from 3:1 to 60:1, all cured at room temperature over a day. As described 
in previous publications20,21, the resulting artificial skins exhibit a range of elastic 
moduli. Viscoelastic effects can be neglected during measurements with actuation 
frequencies less than 100 Hz20. The effects of inertia are negligible because of the 
low frequencies, such that the measurements on these artificial skin samples and 
biomaterials can be considered quasi-static21.

Measurement of elastic moduli using an in situ bioindenter and DMA. An 
in situ bioindenter (Hysitron Biosoft Indenter, Bruker) allowed quantitative 
analyses of the elastic moduli for each sample used for this work, including 
hydrogel, porcine skin (dermis side) and PDMS artificial skins. The measurement 
relied on a 20-μm-diameter spherical probe to indent the surface of a test 
sample, whereby the loading force as a function of the probe displacement was 
continuously recorded (normal bit force resolution, ~1 nN). The Hertz model was 
fitted to the elastic regime of the collected data to yield the final elastic modulus. 
As an example, measurement results for a set of PDMS artificial skin samples 
(dimension of 5 mm × 5 mm × 1 cm (length × width × thickness)) is shown in 
Supplementary Fig. 11b as a function of weight ratios of crosslinker. For instance, 
PDMS samples with a weight ratio of crosslinker to base as 15:1 correspond 
to a measured elastic modulus of ~500 kPa. Tests for porcine skin involved 
measurements with indentation on the dermis side. The DMA measurements 
(Q800, TA Instruments) used a film tension clamp in ambient conditions and a 
range of small strains (<10%). Samples for such measurements were cut into size of 
1 cm × 5 mm × 1 mm (length × width × thickness).

Visualization of actuator operation. The vibratory amplitude represents a key 
parameter for device operation during mechanical measurements. A high-speed, 
high-resolution camera can capture a video in slow motion to allow for direct 
visualization of the actuators, including the amplitudes and orientations of the 
vibratory motions, as shown in the Supplementary Video 1. Similar procedures 
are used in other recently reported studies25. The results of vibratory amplitudes 
show relationships with frequencies of f and input voltages of VA. In addition, 
the force generated by the actuator during actuation was measured via a flexible 
piezoresistive force sensor (FlexiForce); details are given in Supplementary Fig. 12.

Preparation of hydrogel samples and porcine skins with different hydration 
levels. Validation studies involved measurements of hydrogels and abdominal 
skin from porcine models, both with different hydration levels. For the hydrogel, 
a set of samples were synthesized by mixing different amounts (wt%) of 
poly(ethyleneglycol) diacrylate (Sigma-Aldrich) and de-ionized water. Powders of 
methylpropiophenone (2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone, 
~0.6 wt%, Sigma-Aldrich) served as the initiator in the solution mixture, followed 
by UVO treatment for rapid curing in a Petri dish as the mould (area of 25 cm2, 
4-mm thick), with different elastic moduli for each hydration level. For the 
porcine skin, fresh samples from the abdominal region were cut (3 × 4 cm2, 2-mm 
thick) and baked at 50 °C in an oven for over 48 h to evaporate the water content 
inside. The resulting weight of W0 defined a hydration level of 0. Subsequently, 
submerging the samples into Dulbecco’s phosphate-buffered saline (DPBS) 
solution at 37 °C for sufficiently long periods (~1 day) yielded fully saturated 
samples, corresponding to a maximum hydration state, with a weight of W and 
a hydration level that can be calculated as the percentage (W – W0)/W. Similarly, 
different time scales for immersion in DPBS solution yielded samples with 
different hydration levels. A bioindenter was used to evaluate the elastic modulus 
of these samples.

Information for clinical tests and simulated evaluation. All participants for 
the study were fully voluntary and submitted the informed consent before tests. 
The research protocol was approved by Northwestern University’s Institutional 
Review Board and the Northwestern Memorial Hospital (protocol number 
STU00206331-CR003) and registered on ClinicalTrials.gov (registration number 
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NCT03461549). Twenty volunteers (five young: 25–32 years old; five old: 60–68 
years old) were recruited for studies of healthy skin without skin lesions. Among 
them, five have high BMI and five have low BMI. Five patients with skin disorders 
such as plaque psoriasis were involved in clinical tests, as shown in Supplementary 
Fig. 27. The pathological symptoms included red, thick patches of skin lesion 
(typically over 8 mm in diameter) with low hydration levels across the skin surface, 
and can be detected through physical palpations with detectable differences in skin 
properties such as stiffness and thickness. All of these volunteers and patients were 
at rest during the measurements.

After a process of cleaning pre-selected skin areas (lesion and healthy) by gentle 
rubbing with alcohol wipes, the EMM sensors were mounted onto the relevant skin 
areas followed by conformal coverage with a medical dressing (Tegaderm, 3M) to 
secure device placement. The placement of the sensors was performed by research 
staff and/or medical doctors. The EMM sensors were pre-connected to a DAQ 
system (including a locking-in amplifier and a current source) located within  
the operational room. Data recording began after 10 s of system warm-up to ensure 
stable operation. Each participant performed 1 min of measurement in a  
resting position. Data were collected and stored for further data analysis on a  
tablet computer. Similar to the operation on participants, a corresponding 
measurement that simulated clinical tests on an artificial-skin model is shown in 
Supplementary Fig. 26.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the results in this study are available within the paper and its 
Supplementary Information. The raw patient data are available from the authors, 
subject to approval from Northwestern University’s Institutional Review Board.
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Software and code
Policy information about availability of computer code

Data collection The following software applications were used to collect data and to program the devices: lock-in amplifier (SRS SR830, Stanford Research), 
current source (Keithley 6221, Tektronix), and data acquisition (DAQ) system.

Data analysis Data analysis and plotting were done with Origin and Adobe Premiere Pro.
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- Accession codes, unique identifiers, or web links for publicly available datasets 
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- A description of any restrictions on data availability

The data supporting the results in this study are available within the paper and its Supplementary Information. The raw patient data are available from the authors, 
subject to approval from Northwestern University’s Institutional Review Board.
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Methods
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Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Abdominal porcine skin.

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight The experiments were conducted in accordance with the ethical guidelines of the National Institutes of Health, and was approved by 
Northwestern University’s Institutional Review Board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics Twenty volunteers (among them, five were 25–32 years old, and five 60–68 years old) were recruited for studies on normal 
healthy skin without any skin lesions. Five patients (age 25–35) with skin disorders such as plaque psoriasis were involved in 
studies with measurements on lesioned skin. Gender or other information for these participants were randomized.

Recruitment Participation was fully voluntary, and all subjects provided informed consent before the tests. 
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Ethics oversight The research protocol was approved by Northwestern University’s Institutional Review Board and the Northwestern 
Memorial Hospital, USA (Protocol Number: STU00206331-CR003).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration The research protocol was registered on ClinicalTrials.gov (Registration Number: NCT03461549).

Study protocol The full trial protocol can be accessed at https://clinicaltrials.gov/ct2/show/NCT03461549.

Data collection The sensors were mounted onto the relevant skin areas. The placement of the sensors was carried out by research staff and/or 
medical doctors. The EMM sensors were pre-connected to a DAQ system (including a locking-in amplifier and a current source) 
located within the operational room. Data recording began after 10 s of system warm-up, to ensure stable operation. Each subject 
performed 1-min measurement in a resting position. Data were collected and stored for further data analysis on a tablet computer.

Outcomes Primary outcome measure: measurement results based on modulus sensor. 
Secondary outcome measures: Visual analogue scale of skin irritation.
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