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Hyperbolic metamaterials (HMM) can be used to control light propagations in emerging meta-devices and thus
lead to various functionalities (e.g., hyperlens and cloaking devices). Here we propose a kind of exotic tubular
cavity by using multilayered HMM, which contrasts with traditional materials with elliptical dispersion. In such
tubular microcavities, the calculations reveal that they have anomalous scaling laws, such as that the higher-order
resonance mode oscillates at a longer wavelength and the resonant wavelengths hold their positions with changing
the tube wall thickness and diameter. These findings can help the understanding of tubular metamaterials and
could inspire interesting optical experiments and metadevices. © 2018 Optical Society of America
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1. INTRODUCTION

Nanotechnology has led to exciting developments in funda-
mental research including the ability to create artificial struc-
tures called metamaterials [1], which can manipulate material
properties in a fantastical way. Various interesting phenomena
have been discovered, such as negative index of refraction [2],
invisibility cloaks [3], superlenses [4], metasurfaces [5], etc. It
has been noted that a multilayered superlattice with layers of
the thickness of the deep subwavelength scale can lead to aniso-
tropic metamaterials that cannot be found in nature [6]. The
most important kind of multilayered metamaterial is the one
with hyperbolic dispersion [7,8], which is called a hyperbolic
metamaterial (HMM). The HMMs can roll up into a hollow
cylinder and form a tubular microcavity [9,10], which can serve
as hyperlens [11,12], imaging objects beyond the traditional
diffraction limit. Such HMMs’ tubular cavity can be produced
by self-roll-up processes [13–18]. The anomalous resonance
properties in the rectangular and disklike nanocavities made
by HMMs have been studied recently [7,19]. However, there
are few reports on the resonance and propagation properties in
HMM structures with tubular geometries, which could be
applied to design novel opto-electrical devices for plasmonic
lasers [20], biological detection [21], metamaterial fiber [22],
and micro/nanomotors [23].

Two-dimensional multilayered metamaterials can be ap-
proximated and investigated by using an effective media theory
[6,24,25], which can also be applied to three-dimensional
structures such as superlattice cylinders [26,27]. Careful design
enables deliberate tuning of the effective permittivities in such
tubular HMM cavities. In this paper, we implement the Mie
scattering theory and effective media theory to explore the op-
tical resonances in the multilayered tubular cavities with aniso-
tropic metamaterials, including HMMs. Abnormal whispering
gallery mode (WGM) was observed, such as that the cavity res-
onance is independent on the tube size and a higher-order res-
onance mode oscillates at a longer wavelength. Our exploration
could lead to deep understanding and novel devices by using
tubular metamaterials.

2. THEORETICAL ANALYSIS AND NUMERICAL
RESULTS

The multilayered tubular microcavity is sketched in Fig. 1(a).
A single bilayer unit is composed by a layer A and a layer B,
where εA, εB are the corresponding permittivities and dA, dB

are the thicknesses. The materials in layers A and B can be
metal, dielectric, or semiconductor. We assume permeability
μ � 1 and only consider the permittivity ε variance of the
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designed metamaterials. We take the permittivities of the core
and background outside of the hollow cylinder as εc and εb,
respectively [see Fig. 1(b)]. When the individual bilayer thick-
ness is much smaller than the wavelength, an effective permit-
tivity can be approximated using an effective media theory. The
effective media theory allows us to calculate the radial and
tangential permittivity of the multilayered hollow cylinder
structure in the following way:

εθ � εz �
dAεA � dBεB
dA � dB

εr �
εAεB�dA � dB�
dAεB � dBεA

: (1)

We may consider the nonlocal adjustment to such an effec-
tive media model if the multilayer hollow cylinder has a small
radius [28]. But we will demonstrate that the effective media
theory of Eq. (1) is accurate enough for the very thin layers in
our designs in the following discussion.

As a result, the multilayer hollow cylinder structure can be
treated as an anisotropic metamaterial [Fig. 1(b)] whose permit-
tivities εθ and εr are determined by the effective media theory.

We consider transverse magnetic (TM) waves that are
propagating in the r − θ plane with the magnetic field along
the z direction, where the electric field vector can be divided
into two components (along and transverse to the optical axis of
the tube). As a result, both εθ and εr play a role in the dielectric
response. Using the effective media theory, the dispersion
relation for TM polarization is given by

k2θ
εr

� k2r
εθ

� ω2

c2
: (2)

Figure 1(c) shows that several kinds of materials can be di-
vided into four regions according to the signs for εθ and εr . For
the conventional material with εr > 0 and εθ > 0 (Region I),
the dispersion relationship is elliptic. However, when εr > 0
and εθ < 0 (Region II), it leads to a HMM with the foci in

the axis of kθ; similarly, when εr < 0 and εθ > 0 (Region IV),
it leads to a HMMwith the foci in the axis of kr . The dispersion
relationships of these three regions are shown in Fig. 1(d).
Region III with εr and εθ are both negative, and it arises from
tubular microcavities made of metals [29].

We employ rigorous Mie scattering theory to quantitatively
study the optical properties of our tubular cavities in different
regions. The tubular cavity can be viewed as a multilayered
structure in a cylindrical geometry with (N − 1) layers and the
layer indexed by i. The indices of the core and background are 1
and (N � 1), respectively. The ith layer has an outer radius of
ri and the dielectric constant εi, while the tubular cavity is
along the z direction for simplicity.

When the TM waves impact the cavity, the magnetic field in
the ith layer can be expressed as

Hi;z �
X∞
m�0

�ai;m Jm�kir� � bi;mH
�1�
m �kir��eimθ; (3)

where ki � ffiffiffiffi
εi

p
k0. The origin of the cylindrical coordinates

�r; θ� is at the center of tubular cavity, and the Bessel function
Jm and Hankel function H �1�

m of the first kind stand for the
incident and scattering waves, respectively. The resonances
occur in the tubular cavity when

kθ �
2πm
L

; (4)

where L � π�r1 � rN � � π�2R � t� and where m is the
angular momentum mode number, and kθ is the tangential
component of the wave vector.

Using continuities of Hz and 1
ε
∂
∂r Hz , we have

J 0m�ki�1ri� � Di�1;mH
�1� 0
m �ki�1ri�

Jm�ki�1ri� � Di�1;mH
�1�
m �ki�1ri�

� αi
αi�1

J 0m�kiri� � Di;mH
�1� 0
m �kiri�

Jm�kiri� � Di;mH
�1�
m �kiri�

; (5)

where Di;m � bi;m∕ai;m, αi � ki∕εi. Using D1;m � 0, we can
obtain the scattering coefficient DN�1;m of the tubular cavity.
The total absorption cross section of the tubular cavity is
obtained by the following relationship [30]:

Ca �
λ

2π

X∞
m�0

�1 − j2DN�1;m � 1j2�: (6)

In the following, we focus on the material combinations
with hyperbolic dispersion relations (Regions II and IV).
Such HMMs [31] enable photonic structures with unusual fea-
tures, including adiabatic wavelength compression and highly
confined guided modes with very large cutoffs [32,33], which
are due to the unbounded values of wave vector k at a
finite frequency, and thus allowed by the hyperbolic dispersion
relation.

We take Region II (εr > 0, εθ < 0) as an example. We take
the doped semiconductor works at the terahertz (THz) region
as layer A, whose dielectric constant can be described by
the Drude model εr�ω� � ε∞ − ω2

pl∕�ω2 − iωωcol� with plas-

mon frequency ωpl � 1.6 × 1014 rad∕s−1, damping parameter
ωcol � 2.18 × 1010 rad∕s−1 and ε∞ � 1 [34]. The dielectric

Fig. 1. (a) Schematic cross section of a multilayered hollow cylinder
structure; (b) the cylinder structure can be treated as an anisotropic
metamaterial; (c) the different regions of effective permittivities, which
can be achieved with the designed anisotropic metamaterials; (d) the
schematic dispersion relation curves are plotted for Region I (magenta
line, εθ � 3, εr � 2), Region II (red dashed–dotted line, εθ � −3,
εr � 4), and Region IV (blue circle symbols, εθ � 4, εr � −3).
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constant for layer B in the bilayer is εB � 1.96, while the thick-
nesses of the single bilayer are dA � 100 nm, dB � 800 nm.

Here, we take the core and background materials of the hol-
low cylinder structure as air (εb � εc � 1). The radius of the
core and tube wall thickness of the hollow cylinder structure are
set as r1 � 155 μm, t � 40 μm, which can be abbreviated as
(155, 40) μm. For this case, the absorption cross sections of the
angular momentum modes m � 16 in the THz region are
calculated and plotted in Fig. 2(a).

In order to demonstrate that the effective media theory is
accurate enough, we have to perform simulations for cavities
formed by homogeneous materials with permittivity provided
by effective medium theory and directly compare with rigorous
results obtained using Mie theory.

For the TM mode, Hz should satisfy the following
equation:

1

μz

1

r
∂
∂r

�
r
εθ

∂Hz

∂r

�
� 1

μz

1

r2
∂
∂θ

�
1

εr

∂Hz

∂θ

�
� k20Hz � 0: (7)

Using the separation variable method and substitution:
Hz � y�r�e−imθ, x � k0

ffiffiffiffiffiffiffiffiffiffiffi
εθμz r

p
, and μz � 1, we can get

x2y 0 0 � xy 0 �
�
x2 − m2 εθ

εr

�
y � 0; (8)

which is a complex-order Bessel function when εr > 0, εθ < 0.
We can calculate the function based on two kinds of series
expansions and numerical integration [35]. Then the absorp-
tion cross sections of the homogeneous materials with permit-
tivity provided by effective medium theory are calculated and
plotted in Fig. 2(a), which are in excellent agreement with
results calculated by Mie theory from the multilayer structure.
Such agreement supports that all the discussions can be based
on the effective media theory.

From Fig. 2(a) we also can find that for the angular momen-
tum mode m � 16, there are two peaks within a certain wave-
length range. The magnetic field distributions of these two
peaks are presented in Figs. 2(b) and 2(c), which correspond
to two radial resonance modes. The mode number of the radial
resonance mode is set as n. If the magnetic field can be bound
in the tube wall, the wave vector kr can be written as

kr �
πn
t
: (9)

Using resonance mode numbers m and n, we can figure out
all peaks in Fig. 2(a). We can abbreviate the modes m � 16,
n � 1 and m � 16, n � 2 as modes {16, 1} and {16, 2}. From
Figs. 2(a)–2(c) we can find that the resonance mode at wave-
length of 114.6 μm is mode {16, 1} and the mode at 142 μm is
the higher-order radial resonance mode {16, 2}.

Using Eq. (1), we can obtain the effective radial and tangen-
tial permittivities of such structure. The effective parameters for
the working wavelength 114.6 μm are εθ � −8.7� 0.0141i,
εr � 2.21, and for the working wavelength 142 μm are εθ �
−14.36� 0.0267i, εr � 2.2, which can satisfy the conditions
of Region II. As a result, in Region II, higher-order radial res-
onance mode oscillates at a longer wavelength compared to the
lower-order mode, which is different from traditional materials.

In order to clarify such phenomenon, we picked a material
fromRegion I that also has resonancemode {16, 2} and oscillates
at the same wavelength of 142 μm. We take the dielectric con-
stants of the single bilayer as εA � εB � 14.8� 0.01i. The
thicknesses of each layer in the bilayer structure are the same
as in the Region II case. In this case, the absorption cross sections
of the angular momentum modes m � 16 and m � 17 are cal-
culated and plotted in Fig. 3(e). For each angular momentum
mode, we can find multiple peaks within the certain wavelength
range. The magnetic field distributions of these peaks are
presented in Figs. 3(a)–3(d), which are corresponding to modes
{16, 1}, {16, 2}, {17, 2}, and {17, 3}. From the absorption cross
sections and magnetic field distributions, we can figure out that
in Region I the higher-order angular momentummode {17, 2} is
in the shorter wavelength compared to the mode {16, 2}, and a
higher-order radial resonance mode {16, 3} oscillates at the
shorter wavelength compared to {16, 2}, as well.

The absorption cross sections of the angular momentum
modes m � 16 and m � 17 in Region II are calculated and

Fig. 2. (a) The absorption cross sections of mode m � 16 for
Region II from the multilayer structure (blue line) and homogeneous
materials with permittivity provided by effective medium theory (red
circle). (b, c) Calculated magnetic field distributions of different modes
for cavities in Region II.

Fig. 3. (a)–(d) Calculated magnetic field distributions of different
modes for cavities in Region I; the absorption cross sections for
Region I (e) and Region II (g); the dispersion relationship for
Region I (f ) and Region II (h) at various wavelengths.
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plotted in Fig. 3(g). We can find that the higher-order angular
momentum mode {17, 2} is in the shorter wavelength com-
pared to the mode {16, 2}, which is the same as Region I.
However, a lower-order radial resonance mode {16, 1} oscillates
at the shorter wavelength compared to mode {16, 2}, which is
different from the materials in Region I.

In order to explain the phenomena above, we present the
dispersion relationship Eq. (2) of Region I and II at different
resonance wavelengths in Figs. 3(f ) and 3(h). By using Eq. (4),
we can find when the angular momentum mode order m
increases; a significant increase in kθ causes the higher-order
mode to oscillate at a shorter wavelength for both Region I
and II. But if we keep kθ fixed and try to make the radial mo-
mentummode order n increase, this drives the kr growth due to
Eq. (9). In this case, from Fig. 3(f ) we can find that the res-
onance wavelength goes to the shorter wavelength for Region I.
But as shown in Fig. 3(h), the resonance wavelength goes to the
longer wavelength in Region II, which is exactly opposite to the
case of the Region I. As a result, we can find the reason that
the higher-order radial mode oscillates at a longer wavelength in
Region II from the dispersion relationship.

Meanwhile, the dispersion relationship of Region IV has a
similar feature to Region II, except that the foci is in the axis of
kr instead of kθ. So we can figure out that the radial resonance
behavior in Region IV is the same as in Region I, but the
higher-order angular momentum mode oscillates at a longer
wavelength in Region IV.

With the HMM in the Region II, higher-order radial
resonance mode can oscillate at a longer wavelength, while
the modes for the tubular cavities are independent on the tube
diameters and present the same resonant peaks. Figure 4 shows
that the cavities resonate for the {16, 2} modes with different
tube radii and wall thicknesses (r1, t). In Fig. 4(a), a larger
cavity (bigger diameters) has a longer resonant wavelength
for a given mode order for the conventional optical cavities
(Region I), but the refractive index is not strongly related to
the cavity size. As for the cavities with HMM (Region II),
all of the {16, 2} modes for different cavities in diameter res-
onate at the same wavelength of 142 μm, which are shown in
Fig. 4(b). From the dispersion relationship Eq. (2) and εr > 0,
εθ < 0 in Region II, it can be understood that as the cavity size
shrinks, both kθ and kr scale up simultaneously to maintain the
cavity resonant wavelength [7]. The same phenomena of differ-
ent size cavities having the same resonant wavelength can also
be observed in Region IV.

3. CONCLUSIONS

In summary, we have applied the Mie scattering method and
effective media theory to explore the abnormal optical reso-
nance properties in the tubular microcavities with anisotropic
metamaterials. In contrast to traditional materials, tubular
microcavities with HMM present that the cavity resonance
is independent on the tube sizes and a higher-order resonance
mode oscillates at a longer wavelength. These properties we dis-
cussed can guide future experiments and open up new possibil-
ities for nanophotonic applications in optical communications
[12], biosensing [36], optomechanics [37], and cavity optical
nonlinearities [38].
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