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Abstract Optical microcavities with whispering-gallery modes
(WGMs) have large potential and, in particular, those with
a tubular geometry have attracted increasing attention due
to their special geometry and interesting properties such as
trimmed resonant modes, simplicity as fluidic channels, three-
dimensionally (3D) mode confinement, unique evanescent
wave, and so on. Optical microcavities with the tubular geometry
meet the challenge of assembly of conductive, semiconductive
and insulating materials into a tubular geometry, thus spurring
multifunctional applications to optofluidic devices, optical mi-
crodevices like microlasers, and bio/chemical sensors. Fabri-
cation methods such as the fiber-drawing method, rolled-up
nanotechnology, electrospin technique, and template-assistant
method have been developed to address the various require-
ments. These tubular optical microcavities enable researchers
to explore and construct novel optical microdevices for a wide
range of potential applications. This review describes the tubular
optical microcavities from the perspectives of theoretical con-
sideration, optical characterization, and potential applications.

Optical microcavities with tubular geometry: properties
and applications
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1. Introduction to tubular microcavities

Miniaturization and integration are hot research topics in
modern optics and related fields [1–4] and optical res-
onators are ubiquitous in modern optics and optical de-
vices [1]. A variety of cavity resonator geometries, includ-
ing Fabry–Pérot resonators, photonic crystal resonators and
whispering-gallery mode (WGM) resonances, has been fab-
ricated [5, 6]. These resonators constitute attractive physi-
cal systems suitable for basic studies and applications [5,6]
and consequently, the associated fabrication methods and
materials properties are extensively investigated. Optical
microcavities can be produced by lithographic methods
[7], the fiber-drawing technique [8], and self-rolled-up pro-
cesses [9]. Despite the versatility, traditional Fabry–Pérot
resonators and photonic crystal resonators, including the
folded or ring varieties, are fairly complex, large, difficult
to assemble, and prone to vibration instability because of
low-frequency mechanical resonances [3]. In many applica-
tions, the stability and small modal volume are of great im-
portance, but miniaturization of conventional Fabry–Pérot
resonators is very complicated or yields low quality factors
(Q-factor) [3]. Microcavities based on photonic crystals can
provide extremely small mode volumes, but the Q-factors
are typically well below the theoretical optimum. Hence,
WGMs resonators with high Q-factor and high sensitivity
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are attracting great research interest, due to the tunable size
as well as easy assembly and fabrication.

WGMs resonators are typically dielectric spherical
structures in which waves are confined by continuous to-
tal internal reflections. Compared to other types of opti-
cal resonators, WGMs resonators exhibit superior prop-
erties such as ultrahigh Q-factor and tunable size. Daniel
Colladon and Jacques Babbinest first demonstrated the idea
in the 1840s that a light wave might be guided by continuous
total internal refraction in water or glass and this discovery
spurred the fabrication of new optics [10]. The WGM phe-
nomenon was first described in the acoustic regime of St
Paul’s Cathedral in London by Lord Rayleigh [11] and re-
search on WGMs was later extended to the radiofrequency
and optical domains. A light wave can undergo reflection,
refraction, and diffraction just as an acoustical wave travels
along the surface of a wall. If the light path is curved below
a certain minimum radius, as in a whispering gallery, the
normal optical mode becomes WGM and the waveguide
is named as a whispering-gallery guide. A light ray in a
normal waveguide, such as an optical fiber, requires reflec-
tion from the inner surface to propagate. On the other hand,
a light ray in a whispering-gallery waveguide requires re-
flection from the curved outer surface only, and so WGMs,
sometimes are also referred to as morphology-dependent
resonances (MDRs).
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Figure 1 Various WGMs resonator configurations: (a) microtoroid [19], (b) slot waveguide ring resonator [20,21], (c) capillary-based
microtubular resonator fabricated by the drawing method [22], (d) microtubular resonator fabricated by self-rolled-up processes [34],
and (e) microsphere [6].

WGMs with morphology-dependent properties can aid
the measurement of size, shape, refractive index, and tem-
perature of a sphere as well as the diameter and mechan-
ical deformation of fibers [2, 3, 12]. The strong influence
of WGMs on fluorescence and Raman scattering has been
recognized and used to fabricate microdevices such as bio-
chemical sensors [13], microlasers [14, 15], temperature
sensors [16], and so on [12]. Quasicontinuous-pumped las-
ing based on WGMs spherical cavity lasing was reported
and the underlying theories were derived in 1961 [17]. The
lasing behavior in a free dye-doped droplet was first re-
ported in 1984 [18]. The WGMs phenomenon was later
investigated in microdisk diode lasers and cylindrical poly-
mer lasers and recently, WGMs resonance has been studied
in various different systems. Figure 1 shows some of the
popular types of WGMs resonance including the micro-
toroid [19], microring [20,21], tubular geometries [22], and
spheres [6, 23, 24] and a variety of materials encompass-
ing polymers [25–28], liquids [18, 29], inorganic species
[30], and diamond [31, 32] can be used to fabricate WGM
resonances. In this review, we will focus on optical micro-
cavities with a tubular geometry and details of other types
of WGMs optical microresonators can be found in other
review papers [2, 3, 5, 6, 12, 20, 21, 33].

The advent of tubular optical microcavities has led
to new generations of integrated devices and sensors
[9, 35–38]. The first observation of a thin-film ring (tubu-
lar geometry) laser from a layered microcavity layer was
reported by using a tubular glass rod covered with a rho-
damine 6G (Rh 6G)-doped, 0.8-µm thick, light-guiding
polyurethane film in 1971 [39]. Since then, various dye-
doped/undoped transparent materials were chosen to pre-
pare tubular microcavity structures by depositing thin films
such as polyurethane, epoxy, lead-silica, gelatin, and poly-
methylmethacrylate (PMMA) on glass fibers [40]. Interfer-

ence modulation was observed from a layered microtube
by Knight et al. [41,42]. These microcavities provide supe-
rior two-dimensional optical confinement with Q values in
excess of 106 and bode well for low laser thresholds. The
fused-silica capillary tube is filled with a dye-doped liquid
having a high refractive index and this type of microcav-
ity laser is called a core-resonance capillary-fiber WGMs
laser [41,42]. The hollow microstructure (microsphere) was
suggested by Artemyev et al. as a start to study three-
dimensionally (3D) confined photonic and electronic states
especially in the visible spectral range [43]. The layered
microtubes additional boundaries introduce interference or
guiding effects to modify the cavity modes significantly.
On the heels of the rapid development of nanotechnology
and nanoscience, highly luminescent quantum dots have
been introduced to microcapillary microlaser systems [44].
Micro/nanotubes were first prepared via self-rolled-up nan-
otechnology [45, 46], followed by the study of Kipp et al.
in 2006 on tubular WGM optical microcavities fabricated
by self-rolling [47]. 3D optical confinement was observed
along the microtube axis direction of self-rolled microtubu-
lar resonators in 2008 [48]. Afterwards, optofluidic devices
based on a combination of microfluidic and optics have
emerged and found applications in biological/chemical sen-
sors [49], microlasers [50, 51], and temperature sensors
[16]. The bottle microcavities with axis optical confine-
ment were fabricated by Sumetsky, Rauschenbeutel and
coworkers [14, 52, 53]. On account of the superior optical
properties in these microtubular cavities, cell scaffolds, liq-
uid refractive-index sensors, and low-threshold microlasers
have been produced following the study of the optical reso-
nance in self-rolled microtubular cavities. With the excep-
tion of the self-rolling method, most traditional techniques
involve templates [54] and electrospinning [55] in the fab-
rication of microdevices or microsystems with good optical
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performance [15] and promising applications [56] in DNA
detection [50,57], bio/chemsensing [49], cell cultures [36],
lasing [29, 58], and integrated lab-on-a-chip/lab-in-a-tube
devices [38]. Development of new fabrication processes
and introduction of new materials have brought new func-
tions [56]. The WGMs optical microcavities with a tubu-
lar geometry constitute the main topic of this review. The
fabrication, optical properties, simulation methods, and po-
tential applications of tubular optical microresonators are
described in detail, followed by a description of future de-
velopments in this burgeoning field.

2. Theoretical consideration of tubular
microresonators

Theoretical derivation is quite important to the design, fab-
rication, and applications of WGM microcavities with a
tubular geometry as a tool to verify experimental data and
design of optical microdevices. These WGM microcavities
possess different optical resonating structures and analyti-
cal treatment is typically conducted with some approxima-
tions. For instance, microtubes can be regarded as multi-
layered cylindrical structures and structural imperfections
in the wall of the microtubes are frequently ignored. To
describe the optical properties of microtubes in the general
cases, numerical simulation is necessary. Analytical and
numerical results can impart complementary information
about the optical resonance modes such as the resonance
wavelength, Q-factor, and mode profile, which aid the de-
sign of WGM resonators.

Various computational methods have been proposed
and implemented by solving Maxwell’s equations. With
regard to microtubes, besides the widely used analytical
methods including waveguide approximation and Mie scat-
tering, numerical methods such as the finite-difference
time-domain method (FDTD), finite-element method
(FEM) and boundary-element method (BEM) are used for
the theoretical simulation of tubular microcavities. Numer-
ical methods fall into two main categories. The first is the
differential equation scheme including the FDTD and FEM
methods, which involve discretizing the entire space in
terms of grids and solving Maxwell’s equations at each
point in the grids. These approaches are quite flexible and
suitable for objects with arbitrary shape. The second one is
the integral equation scheme such as the BEM method. It
involves dividing the structure into separate homogeneous
regions and only boundary values at interfaces between
different regions instead of values throughout the space are
calculated. The latter approach is more efficient in terms of
computational resources and suitable for problems concern-
ing small surface/volume ratios. Numerical techniques and
analytical models are complementary. Although numerical
simulation can be used to simulate the optical properties of
microtubes, analytical models are needed to explore the un-
derlying mechanisms. The Mie scattering and adiabatic ap-
proximation methods are good analytical models providing
insight into the optical properties of tubular microcavities.

In this section, we review the numerical methods for micro-
tubes and the advantages, disadvantages, and the outlook
of each method are discussed.

2.1. Finite-difference time-domain method

The finite-difference time-domain method (FDTD) method
is widely used in optical calculations [59, 60]. In this
technique, Maxwell’s equations are converted into finite-
difference equations by discretizing the time and space in
finite grids. The resulting finite-difference equations are
solved in a leapfrog manner. The FDTD method can be
applied to complicated structures composed of different
materials with arbitrary structural features. However, the
computational time and memory can be demanding when
spatial grid discretization must be sufficiently fine to cap-
ture the geometric details in the simulated structure. For
example, when considering round objects, fine spatial grids
must be used to resolve the curvature of bent boundaries.

To simulate microtubes using the FDTD method, the
computational domain, geometry of the structure, grid size
(time step), and boundary conditions are taken into con-
sideration. To ensure the convergence of results in general
cases, the size of the spatial grid δ and time step �t should
satisfy the following relationship:

δ < λ/8,�t < T/12, (1)

and �t < δ/c
√

2, where λ and T are the wavelength and
period of electromagnetic waves, respectively, and c is the
speed of light in air. To model the problem in the simulation
domain with a finite size, the proper boundary conditions
such as periodical and absorbing boundary conditions are
needed. The absorbing boundary conditions based on the
perfect matched layer (PML) [61, 62] are widely used to
suppress spurious reflection at the boundary of the com-
putation domain. Using the FDTD method, the character-
istics of optical resonances in the microtubes such as the
resonance wavelength and Q-factor can be obtained by an-
alyzing the temporal response of the system excited by
a short optical pulse. The mode profile at resonance can
be calculated accordingly by exciting the resonance mode
using a chromatic point source. Additionally, it is conve-
nient to track the evolution or propagation of light inside
the microtubes. For example, Hosoda and Shigaki investi-
gated the effects of notches of the microtubes on the res-
onance modes [63] and Kipp and coworkers studied 3D
optical confinement in the microtubes with an uneven axial
profile [48].

Although previous works mainly focus on optical reso-
nances in microtubes made of passive materials, the las-
ing action in microtubes incorporated with gain media
have attracted considerable attention. Many experimental
results have recently been obtained and in fact, it is possi-
ble to study this problem numerically by the FDTD method
[64, 65].

To model the gain media, we consider an effective four-
level atomic system with transition occupation numbers Ni
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Figure 2 Schematic view of an effective four-level atomic system
to model the dynamics of active materials.

(i = 0, 1, 2, 3) for different atomic levels, as shown in
Fig. 2. The total electron concentration Ntot = N0 + N1 +
N2 + N3 is a constant determined from realistic materials.
An external mechanism pumps electrons from the ground-
state level N0 to the third level N3 at a certain pumping rate
�pump, which is proportional to the optical pumping inten-
sity in the experiments. After a short lifetime τ 32, electrons
transfer nonradiatively into the metastable second level N2.
The second level E2 and the first level E1 are called the up-
per and lower lasing levels and electrons can be transferred
from the upper to the lower lasing levels by spontaneous
and stimulated emission. Finally, electrons transfer quickly
and nonradiatively from the first level N1 to the ground-
state level N0. The lifetimes and energies of the upper and
lower lasing levels are τ 21, E2 and τ 10, E1, respectively. By
incorporating the energy transfer between the atoms and
electromagnetic fields, the dynamics of occupation num-
bers of the atoms can be described by the four-level rate
equation [64, 65]:

dN3(t)
dt = − N3(t)

τ32
+ �pump N0

dN2(t)
dt = N3(t)

τ32
− N2(t)

τ21
+ 1

�ωa
E(t) · dP(t)

dt

dN1(t)
dt = N2(t)

τ21
− N1(t)

τ10
− 1

�ωa
E(t) · dP(t)

dt

dN0(t)
dt = − N1(t)

τ10
− �pump N0

, (2)

where ωa is the central frequency of radiation of the mate-
rials related to the atomic transition energy levels through
ωa = (E2 –E1)/ћ and (hω)−1E(t)dp(t)/dt is the induced ra-
diation rate or excitation rate depending on its sign.

Based on the classical electron oscillator model, the net
macroscopic polarization P(t) induced in the presence of an
applied electric field E(t) for an isotropic medium can be

described as follows [66]:

d2 P(t)

dt2
+ �ωa

dP(t)

dt
+ ω2

a P(t) = κ�N12 E(t), (3)

where �ωa is the line width of the atomic transition,
�N12(t) = N1 (t) – N2 (t) is the population inversion that
drives the polarization, and κ is the coupling strength of P(t)
to external electrical fields. It is known from Eq. (4) that the
amplification line shape is Lorentzian and homogeneously
broadened.

This self-consistent model can be applied to the study
of light amplification, enhanced spontaneous emission, and
even lasing action in systems with active media. Hence,
numerical investigation of the optical properties of micro-
tubes with gain by this model may uncover new interesting
optical phenomena to benefit experimental investigations.

2.2. Finite-element method

The finite-element method (FEM) is a versatile numerical
technique in electromagnetic computation [67–69] and is
capable of handling arbitrary shapes and different materials.
FEM is based on subdividing the computational domain into
smaller subdomains called finite elements and expressing
Maxwell’s equations under the associated boundary condi-
tions as a set of linear equations that can be solved com-
putationally using linear algebra. The finite elements can
be nonorthogonal polyhedra with triangular, quadrangle or
curved shapes in two dimensions. To simulate microtubes
by FEM, the computational domain, the geometry of the
structure, grids, and boundary conditions should be taken
into consideration, similar to the procedures in the FDTD
method. However, unlike FDTD simulation, which is re-
stricted to the time domain, FEM can be performed in both
the frequency and time domains. While optical resonances
in microtubes can be investigated directly in the frequency
domain, propagation of light in microtubes can be tracked
in the time domain.

FEM has two advantages over the FDTD method. The
first advantage is that nonuniform spatial and nonorthogo-
nal grids are used to discretize the computational domain
in FEM. This is essential when dealing with systems that
consist of objects with characteristic lengths different from
each other and having curved boundaries. As a demonstra-
tion, we consider a microtube with a single-layered wall
in a dielectric matrix as shown in Fig. 3. In order to re-
solve the geometric details of the wall, finer grids are used
in the wall region, whereas coarser grids are employed
in other regions. The second advantage is that arbitrary
materials parameters can be adopted. Modeling materials
with exotic parameters, for instance, metamaterials with
extreme anisotropy, is a great challenge. It has been shown
that they can be handled reliably by FEM. Smith et al.
have investigated the optical properties of microtubes with
multilayered walls consisting of alternative dielectric and
metallic layers [70] and these microtubes can be regarded
as ones with single-layered walls composed of anisotropic
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Figure 3 Schematic diagram of discretization of computational
domain in FEM simulation.

materials. However, FEM demands more computational re-
sources such as time and memory than FDTD. For example,
assuming the scale of the system is N, the computational
effect in FEM is N2 since linear equations are involved in
FEM, whereas it is N in FDTD.

2.3. Boundary-element method

The boundary-element method (BEM) is a numerical
method used to solve linear partial differential equations
(PDE) formulated as integral equations (i.e. in the bound-
ary integral form) [71]. It can be applied to fluid mechanics,
acoustics, and electromagnetics, and fracture mechanics. In
electromagnetics, the more traditional term is “method of
moments”. The essential reformulation of PDEs that un-
derlies BEM consists of an integral equation defined by
the boundary of the domain and an integral that relates the
boundary solution to the solution at points in the domain.
The former is termed a boundary integral equation (BIE)
and BEM is often referred to as the boundary integral equa-
tion method or boundary integral method.

BEM is often more efficient than FEM and FDTD in
terms of computational resources when addressing situa-
tions related to a small surface/volume ratio. The advantage
of BEM is that only the boundary (or boundaries) of the do-
main of the PDE requires subdivision, whereas in FEM or
FDTD, the whole domain of the PDE requires discretiza-
tion. Hence, the dimension of the problem is effectively
reduced by one. For example, an equation governing a 3D
region is transformed into one pertaining to the surface.
In cases where the domain is exterior to the boundary, the
extent of the domain is infinite and hence, BEM is even
more advantageous and the equation governing the infinite
domain is reduced to an equation over the (finite) boundary.

Figure 4 Schematic diagrams: (a, b) An N-layered cylindrical
structure [N = 2 is shown] and (c) Flat dielectric film with dielectric
constant ε and thickness � in air [72].

BEM is applicable to problems in which Green’s functions
can be calculated, thus usually involving linear homoge-
neous media. This places considerable restrictions on the
range and generality of problems to which boundary ele-
ments can be applied.

2.4. Mie scattering method

When the wall thickness of microtubes is smaller than the
wavelength range of interest, it is reasonable to neglect the
structural imperfections in the microtubes such as lobes on
the inside and outside rolling edge and possible defects.
This approximation can serve as a good starting point for
analytical investigation of optical properties of microtubes
[48, 63, 72]. The microtube can be treated as an N-layered
cylindrical structure as shown in Figs. 4a and b. The wall of
the microtube is a film with N–1 layers and the layer index
i of the core and background are 1 and N+1, respectively.
The ith layer has an outer radius of ri and dielectric con-
stant of εi ≡ n2

i and the microtube is along the z direction.
We consider transverse-magnetic (TM)/transverse-electric
(TE) waves that are propagating in the x–y plane with the
electric/magnetic field along the z direction.

The Mie scattering method can be applied to investigate
the optical response of microtubes. When TM (TE) waves
impact a microtube, the electric field Ez(r, φ)(magnetic
field Hz(r, φ) in the ith layer) can be expressed as [72]

�i (r ) =
∑

m

[ai,m Jm(kir ) + bi,m H (1)
m (kir )]eimϕ, (4)

where � represents Ez (Hz) of the TE (TM) waves, ki =√
εi k0. The origin of the cylindrical coordinates (r, φ) is

at the center of microtube and the Bessel function Jm and
Hankel function H (1)

m of the first kind stand for the incident
and scattering waves, respectively. Using continuities of Ez

(Hz) and ∂
∂r Ez( 1

ε
∂
∂r Hz) for TM (TE) waves, we have

J ′
m(u) + Di+1,m H (1)′

m (u)

Jm(u) + Di+1,m H (1)
m (u)

= αi

αi+1

J ′
m(v) + Di,m H (1)′

m (v)

Jm(v) + Di,m H (1)
m (v)

,

(5)
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where u = ki+1ri+1, v = kiri+1, Di,m � bi,m/ai,m, and
αi = ki(ki/εi) are for the TM (TE) waves [72]. Using D1,m
= 0 and Eq. (1), we can obtain the scattering coefficient
DN+1,m of the microtube. The total scattering cross section
of the microtube is obtained by the following relationship
[73, 74]:

Cs ≡
∑

m

Cs,m =
∑

m

2λ

π

∣∣DN+1,m

∣∣2
. (6)

Near the resonant wavelength λm, the partial scattering
cross section has a Lorentz line shape [74, 75], Cs,m =
4k−1

0 γ 2
m/[(k0 − km)2 + γ 2

m], where km = 2π /λm and λm is
the resonant wavelength. The Q-factor of the mth-order
resonance can be obtained by Q = km/(2γ m). The resonant
wavelength and Q-factor can also be obtained by identify-
ing the pole of the scattering cross section in the complex-
frequency plane. However, the calculation is more time
consuming and the underlying physics is more complex.

It should be mentioned that the resonant wavelength of
the microtubes can be estimated by regarding the microtube
wall as a rolled-up planar waveguide with an effective di-
electric constant ε and thickness �. The waveguide modes
in the planar waveguide are described by the propagating
constant β that can be obtained analytically by applying
the whispering gallery conditions βL = 2πm, where L =
π (r1+rN) and that the integer m is the order of resonance.
The results obtained from this waveguide approximation
method agree well with those by the rigorous Mie scat-
tering method when the optical thickness of waveguide
(
√

ε�) is sufficiently small with respect to the resonant
wavelength.

2.5. Adiabatic approximation for axial
confinement

Structural variations along the axial length of the microtube
can change the axial field distribution and lead to axially
confined modes oscillating back and forth along the axis.
Under the conditions that the cylindrical symmetry of the
microtube with respect to its axis remains and there are few
variations of the tube diameter along the axial length, these
axially confined modes can be treated by adiabatically sep-
arating the azimuthal and axial modes, as proposed by Kipp
and coworkers [48, 76]. Starting from Maxwell’s equation
for TM waves:

− 1

n(r, θ, z)2
∇2 Ez(r, θ, z) = k2

0 Ez(r, θ, z), (7)

where k0 is the wave number in air and n(r, θ , z) is the
refractive index profile of the microtube. The tube axis is
assumed to be along the z direction. The solution of Eq. (7)
has the form:

Ez(r, θ, z) =
∑

m

am�m(r, θ ; z)�m(z), (8)

where �m(r, θ ; z) is the solution of circulating propagation
at a fixed z, m is the angular index, am is the expansion
coefficient, and �(z) is the envelope of the solution along
the axial length. �m(r, θ ; z) satisfies the two-dimensional
scalar wave equation:

− 1

n(r, θ ; z)2
∇2�m(r, θ ; z) = k2

c �m(r, θ ; z), (9)

where kc is the wave number of the circulating propagation.
�m(r, θ ; z) is normalized to

〈�m | |�m〉 = 1, where 〈‖〉 =
∫ ∫

drdθ.

Substituting Eq. (9) into Eq. (8), we obtain:

− 1

n2

∑
m

am[∇2
r,θ�m�m(z) + �m∇2

r �m(z)]

= k2
0

∑
m

am�m�m . (10)

Multiplying Eq. (10) by �∗
m(r, θ ; z) and integrating over the

cross section of the microtube on both sides using Eq. (6),
it becomes:

− 1

n2
am(k2

c �m − 1

n2
c

∇2
z �m)

+
∑
p �=m

ap(k2
pm�p − 1

n2
pm

∇2
z �p) = am�m, (11)

where

1

n2
c(z)

=
〈
�m

∣∣∣∣ 1

n2

∣∣∣∣�m

〉
,

k2
pm(z) =

〈
�m

∣∣∣∣ − 1

n2
∇2

r,θ

∣∣∣∣�p

〉
,

1

n2
pm(z)

=
〈
�m

∣∣∣∣ − 1

n2

∣∣∣∣�p

〉
. (12)

When the structural variation of the microtube is very slow,
we have

k2
pm/k2

c � 1, n2
c/n2

pm � 1. (13)

Under these conditions, Eq. (11) is reduced to the final axial
equation:

− 1

n2
c

∇2
z � + k2

c � = k2
0�. (14)

Equation (14) resembles the 1D Schrödinger equation for a
particle moving in an effective potential defined by kc

2 and
nc can be regarded as the effective mass of the particle. In
simple cases, for example, when nc is a constant and k2

c ∝ z2

and taking the form of a harmonic potential, Eq. (14) can be
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Figure 5 Schematic diagrams for the coupling of light into tubular cavities based on (a) fiber evanescent coupling and (b) photolu-
minescence (PL) effects of the microcavity. In (a), when light propagates in an optical fiber, it can couple to the cavity through an
evanescent field. In (b), the wall of the cavity consists of a photoluminescent material with its electronic structure shown schematically
in the right panel. Resonance modes of the system can be excited by using the pumping light.

solved analytically to yield the energy spectrum of a simple
harmonic oscillator. On the other hand, the energy spectrum
and axial modes profile in general cases can be obtained
by numerically solving Eq. (14) by the finite-difference
method.

It should be noted that nc can vary along the axial length
of the microtube. According to Eq. (12), nc is the weighted
average of the refractive index over the cross section of
the microtube (including its environment and core). The
weighting factor is determined by the intensity profile of the
corresponding azimuthal modes. With respect to resonant
modes with high Q-factors, the mode profiles concentrate
within the tube wall and nc can be approximately taken
as the average value of the refractive index of the tube
wall. However, for those with low Q-factors, the fields can
penetrate considerably into the environment and core and
hence, nc may exhibit remarkable changes along the axis of
the microtube.

By fabricating microtubes with a variety of axial pro-
files, researchers have systematically investigated the ef-
fects of different axial potentials on the properties of res-
onant modes of the microtubes. The Q-factors and axial
confinement of the resonant modes can be tailored with
different axial potentials and so it is also possible to change
the effective mass nc to tailor the optical properties of res-
onant modes in order to uncover new phenomena.

All the methods mentioned above have their own char-
acteristics and several methods can be used in conjunction
to solve a problem. The perturbation theory is quite effec-
tive and suitable for the calculation of defects in microcavi-
ties or nanoparticles on the surface of tubular microcavities
[77–79]. Both the Mie scattering theory and adiabatic ap-
proximation have been employed to determine the optical
axial confinement [72] and more details concerning 3D op-
tical confinement can be found later in Section 4.

3. Light propagation in microtubular cavities

The optical properties of microtubular cavities such as the
Q-factor, polarization, and 3D optical confinement play im-
portant roles in optical devices in microsystems or lab-on-

a-chip systems. To experimentally investigate the optical
properties of tubular cavities, it is of great importance to
achieve efficient coupling of light into the system. Two
schemes based on fiber evanescent coupling and photolumi-
nescence (PL) effects of the cavities respectively are mainly
used, as shown in Fig. 5. For the former one, consider plac-
ing an optical fiber in close proximity to tubular cavities.
When light propagates in the fiber, it can couple into the cav-
ities through an evanescent field. Optical resonances in the
cavities can be detected by transmission (reflection) spectra
through (from) the fiber. This coupling scheme allows for
highly efficient and mode-selective coupling. However, due
to the strong coupling between cavities and fiber, Q-factors
of resonances in the cavities can be decreased remarkably.
For the latter one, by incorporating photoluminescent mate-
rials into the walls of tubular cavities, resonance modes with
high Q-factors can be excited by using pumping light. Op-
tical resonances are probed from PL spectra. Note that the
Q-factors of resonances will not be altered in this scheme.
However, all resonance modes with frequencies inside the
spectral range of PL emission can be excited, while their
intensity mainly depends on their Q-factor, respectively. In
this section, some traditional and important physical prop-
erties are introduced to reveal their superior characteristics
in the field of label-free (bio-)chemsensors.

3.1. Evanescent wave

When a light beam is totally internally reflected on a dielec-
tric interface separating an optically high-index medium
and optically lower-index medium, the reflected light beam
is slightly shifted compared to the one in the classical
approach using geometrical optics. This phenomenon is
known as the Goos–Hänche effect [80]. The Goos–Hänche
shift (GHS) is a lateral shift of totally reflected beams
along the optical interface. That is, the points of inci-
dence and reflection do not coincide. This is attributed to
the phase changes due to the evanescent wave that propa-
gates into the lower-index medium near the interface [81].
In this case, the beam appears to travel as an evanescent
wave over a short distance through the optically low-index
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medium. Thus, in each reflection along the circular path of
WGMs, the light seeps into the surroundings as an evanes-
cent wave [2–4, 9, 54, 82–87]. A larger GHS corresponds
to a larger evanescent wave as it propagates into the lower-
index medium near the interface. The characteristics and
theoretical simulation of GHS and evanescent wave are
still actively investigated [88–91] although they are some-
times ignored because the exponentially small magnitude
is far below that of the refracted field. However, the evanes-
cent wave plays an important role in optical microcavities
with a tubular geometry and thin walls (several micrometers
or subwavelength thick). Most of optical properties in mi-
crocavities show a strong relationship with the evanescent
wave and it will be discussed in the following sections. To
demonstrate the relationship between the optical properties
of tubular microcavities and evanescent wave, the influence
of polarization state and wavelength of incident light wave
on the evanescent wave is first discussed.

The GHS can be different if the polarization state of
the incident light wave is changed. The optical-beam dis-
placements in the incident plane are not the same for
TE-polarized wave (the electric vector parallel to the in-
cident plane) and TM-polarized wave (the electric vector
perpendicular to the plane of incidence). The difference
between the GHS reaches a maximum between TE- and
TM-polarized waves with the same wavelength [91]. The
polarization-dependent GHS phenomena are confirmed by
experiments and theoretical simulation [91] and the pene-
tration depth is larger in the TE mode (s polarization) than
the TM mode (p polarization) [80, 81, 92]. It should be
noted that the definition of TE and TM mode (polarization)
is under debate. The details will be discussed in Section
3.3 with Figs. 4 and 10. To compare the experimental data
with theory, the GHS versus the incident angle relationship
is derived numerically using Artmann’s formulas [93]:

dTM = λ

π

sin(i)

[n2 sin2(i) − 1]1/2
(15)

dTE = dTM

[(1 + n2) sin2(i) − 1]1/2
, (16)

where dTE (TM) represents the GHS for the TE (TM) eigen-
state, i is the incident angle on the plane dielectric surface,
and n is the refractive index.

The difference between the TE and TM longitudinal
GHS versus the angle of incidence at λ = 0.67 µm (n =
1.511, circle and solid line) and λ = 1.083 µm (n = 1.506,
cubic and break line) are shown in Fig. 6. The relative
sign of the two signals is to ensure that the TE polariza-
tion state is characterized by a higher displacement than
the TM state. The TE mode thus suffers a larger optical
loss than the TM mode at the surface of the optical mi-
crocavities, where the evanescent wave is possibly coupled
with the radiation mode or absorbed slightly by the sur-
rounding low-index media (Fig. 6). Figure 6 indicates that
the agreement between the experimental measurements and
theoretical calculation is good [91]. Furthermore, the GHS
is proportional to the incident light wavelength [91]. In

Figure 6 Difference between the TE and TM longitudinal GHS
versus the angle of incidence at λ = 0.67 µm (n = 1.511, circle
and solid line) and λ = 1.083 µm (n = 1.506, cubic and break
line), respectively. Reproduced with permission from ref. 91 (the
polarization states are redefined in this review).

the short-wavelength limit λ → 0, the GHS disappears,
leading to the standard ray dynamics of geometric op-
tics and the displacement of TM (or TE) polarization in-
creases with incident wavelength (Fig. 6). Consequently,
the evanescent wave increases with increasing incident
wavelengths.

This difference in the optical loss caused by the
evanescent wave is thought to affect the polarization
characteristics, Q-factor, and sensitivity of tubular optical
microcavities [92]. The light wavelengths in WGMs mi-
croresonators are confined by continuous total internal re-
flection. In each reflection along the circular path of WGMs,
the light seeps into the surroundings as an evanescent wave
[2–4,9,54,82–87]. Based on the discussion on the GHS and
evanescent wave, two points are noted. First, the TE mode
shows a larger light loss in each reflection along the circu-
lar path of the tubular WGMs microresonators than the TM
mode. And secondly, the light loss in the tubular WGMs
microresonator increases with the light wavelength.

The evanescent waves affect the properties of optical
microcavities such as the Q-factor and polarization and the
application of microcavities is also greatly influenced by
the evanescent waves. At the same time, the evanescent
waves are used to characterize the optical properties of op-
tical microcavities and fabricate new optical devices. These
issues will be discussed in detail later in this review.

3.2. Q-factor dependence on tubular
wall characteristics

Among the various important characteristics of optical mi-
croresonators, the Q-factor is one of most basic parameters.
It is a measure of the energy loss and defined by the time-
averaged energy in the cavity divided by the energy loss per
cycle [33]:

Q = ω
Stored energy

Power loss
. (17)
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Figure 7 (a) Calculated angle-averaged radial dis-
tribution of TE165.1 and TE137.3 in a homogeneous
sphere and a shell for a = 0.926b (inner radius
a �11.9 µm and outer radius b �12.8 µm) [103].
(b) Radial field distribution calculated for a ring with
the diameter of the self-rolled tube and a wall thick-
ness of 120 nm. The refractive index of the tube wall
(gray shaded region) is assumed to be 3.3. Outside
the tube we set n = 1. For the red (black) curve a re-
fractive index inside the tube of ni = 1.49 for toluene
(ni = 1 for vacuum) is used [85].

The Q-factor in a resonant mode is an estimation of the
finite photon lifetime in practice and can be determined by
the ratio of the resonant frequency and the full width at half-
maximum (FWHM) bandwidth of the resonance peak. In
order to characterize the property of a resonator by keeping
its energy inside for a decay time τ , Q-factor can also be
expressed as [12, 33]:

Q = ω

�ω
= ωτ, (18)

where �ω is the linewidth (FWHM) of the Lorentzian peak
associated with the considered resonance. The Q-factor of
the WGM is determined by other mechanisms that cause
light losses in WGMs. Thus, it is convenient to introduce
the partial Q-factors Q j related to each type of light losses
in the microcavities and to describe Q by the well-known
expression Q = ∑

j Q j [12, 94, 95].
Normally, in an isolated (not coupled) WGM optical

microcavity, the overall Q-factor (the intrinsic Q-factor of
the resonators) is determined by the individual loss terms
according to [12]:

Q−1
0 = Q−1

rad + Q−1
mat + Q−1

s.s + Q−1
cont. (19)

The first term Qrad denotes radiative (curvature) losses.
Q−1

rad vanishes exponentially with increasing size and for
resonator diameters larger than 10 µm radiative losses are
negligible [12, 96]. Qmat is associated with absorption and
bulk Rayleigh scattering in the materials constituting the
microcavities. Qs.s denotes scattering losses due to resid-
ual surface inhomogeneity. There are many different ex-
pressions for Qs.s [95, 97–100]. Qcont denotes the losses
introduced by surface contaminates during the fabrication
process. The limitation of the ultimate Q-factor caused by
adsorption of atmospheric water on the surface of fused-
silica microresonators is demonstrated in 1996 [101] and
Qs.s and Qcont are both defined as Qs.s (scattering light losses
due to surface inhomogeneity).

In WGM microresonators, the most important loss
terms are bulk absorption and scattering at surface inho-
mogeneities [96]:

Q−1
0 = Q−1

mat + Q−1
s.s . (20)

Similarly, in an isolated (not coupled) WGM optical micro-
cavity with a tubular geometry, the overall Q-factor can be

expressed as [94]:

Q = Q−1
rad + Q−1

wall + Q−1
s.s ≈ Q−1

wall + Q−1
s.s , (21)

where Qrad, Qwall, and Qs.s are the Q-factors that are rea-
sonably determined by the radiation loss, loss in the wall
medium, and loss resulting from the surface scattering, re-
spectively [94]. Based on a detailed analysis on the Q-
factors of the WGMs, it is noted that all WGMs (up to the
15th order) have Qrad � 1011 [94]. Thus, Qrad is negligible.
If the WGM optical microcavities with a tubular geometry
is filled with liquid, the Q-factor Qliq is determined by [94]:

Q−1
liq = Q−1

wall + Q−1
s.s + η1 Q−1

sol . (22)

In WGM microresonators with a tubular geometry, the most
important light loss terms are light loss in the wall medium
(Qwall), scattering at surface inhomogeneity (Qs.s), and light
loss caused by the liquid in the tubes core (Qsol), and η1 is the
fraction of evanescent wave light outside the tube wall. The
Q-factor increases as η1 decreases. The influence of wall
thickness and materials index, surface roughness, and liquid
medium on the Q-factor of WGM optical microcavities with
the tubular geometry cannot be overlooked.

Based on Mie scattering theory simulation, the Q-factor
of tubular optical microcavities can be increased by increas-
ing the wall thickness and effective index constant [72] and
reduced by increasing the wavelength [102] because of the
properties of the evanescent waves. The evanescent waves
impact the Q-factor significantly.

Figure 7 indicates that light can be confined in the wall
of the fiber-drawing glass capillary [103] and self-rolled
optical microcavities [85]. Meanwhile, the modes gener-
ate outer and inner evanescent wave at the regions r < a
(r is the radial position; a is the inner radius) and r > b
(b is the outer radius) defined as the inner evanescent wave
and outer evanescent wave, respectively. Compared to tradi-
tional capillary optical microcavities (Fig. 7a), the evanes-
cent wave fraction of self-rolled optical microcavities with
ultrathin wall thickness is higher (Fig. 7b). The Q-factor
decreases with larger fraction of evanescent wave. The Q-
factor indicates light confinement and the evanescent wave
is generally related to light loss. Therefore, the Q-factor
of the self-rolled tubular optical microcavities (<5000)
is smaller than that of other types of optical microres-
onators with a tubular geometry (>104). However, the inner
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evanescent wave and outer evanescent wave inside and out-
side the tube are different in tubular optical microcavities.
This ensures efficient coupling of the external emitters or
analyte with the optical modes and opens up, for example,
the possibility of evanescent field-coupled lasing [29] of
external emitters in microtube resonators or lab-on-a-chip
sensors to detect analytes such as DNA, cells, molecules,
proteins, and viruses [13]. Some of these interesting appli-
cations will be discussed in Section 5. Three parameters:
the wall thickness and morphology, index contrast, and ma-
terials in the tube walls influence the Q-factors of tubular
optical microcavities and the influence of the wall thick-
ness, materials index, and liquid medium on the Q-factor of
WGM optical microcavities with a tubular geometry will be
discussed in detail in the following section. The influence
of the evanescent wave will also be briefly described.

(1) Wall thickness and morphology

The wall of the tubular optical microcavities supports the
WGMs. Owing to the Goos–Hänche effect, in each reflec-
tion along the circular path of WGMs, the light seeps into
the surroundings as an evanescent wave [2–4,9,54,82–87].
Meanwhile, based on the Mie scattering theory, the Q-factor
bears a strong relationship with the wall thickness [104].
In tubular microcavities with the same index constant, the
wall thickness and morphology are crucial for achieving
(ultra-)high Q-factor. Hollow structures show higher Q-
factors than solid structures for spherical microcavities
by a factor of about 10 [43]. Figure 7a shows the calcu-
lated angle-averaged radial distributions of the two modes
(TE165.1 and TE137.3) for the hollow and solid spheres with
the same radius. In the solid case, the radial distributions
extends far below the inner boundary (r = a = 0.926b)
compared to the hollow case. The light is strongly con-
fined within a < r < b in the hollow case [103]. The mode
distributes deeper from the outside boundary and the cor-
responding cavity Q-factor decreases, especially for the
higher mode order (l > 1). The second (radial) mode order
(l) indicates the number of maxima in the radial distribution
of the internal electric field [54].

Based on Eq. (22), the Q-factor increases when η1 (the
fraction of evanescent wave light outside the tube wall) de-
creases. Figure 7 shows that the evanescent wave percent-
age of the glass capillary with thick wall (�1 µm, mode
order l = 1) is smaller than that of self-rolled microtubes
with an ultrathin wall (�150 nm thick). In other words,
the light loss in a self-rolled tubular optical microresonator
is dramatically higher than that in the glass capillary res-
onator. Hence, compared to glass capillary microcavities
with a thick wall (> 0.5 µm), the silica glass self-rolled mi-
crotubes with an ultrathin wall (subwavelength, <150 nm)
have a smaller Q-factor (less than 103). For one given az-
imuthal mode (m) of tubular optical microcavities with thick
walls (wall thickness/outer diameter >0.05), the Q-factor
increases slightly with wall thicknesses [104], whereas for
one given azimuthal mode (m) of tubular optical microcav-
ities with (ultra-)thin walls (wall thickness/outer diameter

<0.05), the Q-factor increases dramatically with increasing
wall thickness [104, 105].

Compared to (ultra-)high Q-factor (higher than 104)
optical microresonators resembling microspheres, micro-
spheroids, and toroids, the Q-factor of tubular microcavities
without coupling is quite small (less than 5000). In some op-
tical microresonators, self-interference can produce a reso-
nant mode that is strongly localized along the axial direction
to produce 3D optical confinement, but the WGMs in a uni-
form long tubular microresonator without taper coupling
are delocalized. More details about 3D optical confinement
are described in Section 3.4.

(2) Index contrast

Both theoretical simulation and experimental data indi-
cate that high-index materials are good for (ultra-)high Q-
factor microcavities. Based on Artmann’s formulas (see
Section 3.1), the evanescent wave increases with decreas-
ing index contrast between the wall of the microcavity and
low-index medium. Hence, the tubular microcavities with
a high index contrast wall support low-light-loss WGMs
[106, 107], meaning that the high index contrast microcav-
ities possess (ultra-)high Q-factors compared to the low in-
dex contrast ones. Both the ultrathin wall (subwavelength)
and effective index constant of the self-rolled microres-
onator are smaller than those of the glass capillary. The self-
rolled optical microcavities with (ultra-)thin walls show
small light confinement in the microcavities. Therefore, it
is reasonable that the Q-factor (less than 5000) of a self-
rolled microtube with ultrathin wall is still smaller than the
Q-factor (larger than 104) of the fiber-drawing glass capil-
lary. Meanwhile, the experimental results and Mie scatter-
ing show that the self-rolled microcavities with high effec-
tive index possess a high Q-factor compared to those with
a low effective index [102]. Furthermore, the main limit of
the WGM Q-factor in Eq. (22) is related to the contribution
Qwall associated with absorption and bulk Rayleigh scatter-
ing in the materials constituting the tubular microcavities.
Qwall can be approximated as [12, 108]:

Qwall ∝ 2πn

αλ
, (23)

where λ is the light wavelength in vacuum, α is the absorp-
tion coefficient, and n is the refractive index. This approx-
imation shows that the Q-factor increases as the refractive
index (n) increases. As the index constant of the semicon-
ductor (n > 3) is higher than that of silica (n �1.5), the Q-
factor of InGaAs/GaAs rolled-up microtube laser (�3500)
[58,109] is higher than that of SiO/SiO2 bilayer self-rolled
tubular microcavities without a coating (Q-factor less than
1000) [34].

High index contrast microcavities support low-loss
WGMs [106]. In order to optimize the optical properties
of tubular microcavities, two processes can be adopted,
(1) choosing high index constant materials: Y2O3/ZrO2
self-rolled microcavities without surface modification
with larger Q-factors (>1500) than SiO/SiO2 [102] and
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Figure 8 (a) 3D schematic diagram of a rolled-up nanomem-
brane in liquid. The bottom-right inset illustrates the multilayered
structure of the wall, the top-left inset shows an optical micro-
scope image of an ordered array of rolled-up nanomembranes,
and the bottom-left inset shows a bird’s-eye view SEM image
of the opening of a rolled-up nanomembrane. (b) Photolumines-
cence (PL) spectra obtained in water from rolled-up nanomem-
branes with HfO2 and Al2O3 coating layers (30 nm thick in both
cases) taken under excitation of the 442-nm line of a He-Cd
laser [9].

(2) coating the tube walls with high index constant mate-
rials. When the self-rolled optical microcavities are coated
with the same thickness materials with different indexes, the
high index coating will effectively enhance the Q-factor.
For example, Fig. 8 indicates that HfO2 effectively im-
proves light confinement compared to the Al2O3 coating
since HfO2 has a larger refractive index [9].

Besides the diameter of optical microcavities (see
Section 3.4), the same effect can be achieved by cre-
ating an “index bottle” without involving any diameter
change along the axial direction [110]. These prolate “index
bottle” WGM microcavities possess ultralarge Q-factors of
2 × 105 [110].

(3) Inside and outside medium

The main limit of the WGM Q-factor in Eq. (22) is related
to the contribution Qsol associated with light loss caused by
the liquid in the tube core [94]. The wall of the tubular opti-
cal microcavities supports WGMs and the evanescent wave
interacts with the inside and outside surrounding medium
when the evanescent wave light seeps into the surround-
ing medium [9, 85, 94, 111–113]. Based on Eq. (21), the
Q-factor increases as η1 (the fraction of evanescent wave
light outside the tube wall) decreases. The Q-factor is in-
fluenced by the inside and outside liquid media and here,
both experimental and theoretical results are discussed.

The liquid index influences the self-rolled-up optical
microcavities with subwavelength wall thickness as ob-
served by Huang et al. [9] and Moon et al. [103]. Huang
et al. noticed that as the refractive indices of the surround-
ing media increased, light loss for WGMs modes increased
and the Q-factor of the WGMs in the tubular optical mi-
crocavities decreased. However, light loss in the TE modes
was much more prominent than in the TM modes, rendering
the TE modes undetectable in liquids [9]. The Q-factors of
big microcavities (the diameter is around 9 µm) in air and
liquid are �480 and �220, respectively, for the mode at
�2 eV, and those of the small microcavity (the diameter is
around 7 µm) are �660 and �250, respectively [9]. Moon
et al.’s results indicate the Q-factor of glass capillary micro-
cavities increases as the refractive index of the inner region
increases [103]. As the liquid index increases from 1.0 to
1.1 and 1.15, the Q-factor of TE137.3 increases from 4.9 ×
103 to 9.0 × 103 and 1.5 × 104, respectively [103]. The ex-
perimental results are consistent with theoretical simulation
[104].

Based on Mie scattering theory, a theoretical demonstra-
tion about the influence of the liquid medium on the rolled-
up tubular optical microcavities was reported by Zhao et al.
[104]. Figure 9a shows the cross-sectional schematic view
of a microtube. The microtube is placed in four different
surroundings: air (Fig. 9d), with a liquid inside and air out-
side (Fig. 9e), with a liquid outside and air inside (Fig. 9f),
and in a liquid (Fig. 9g). The liquid has a refractive index
of nL. The Q-factors of the ideal microtubes depend on the
index n3 of the outer medium (Fig. 9b). For the ideal mi-
crotubes with a given diameter, the Q-factor increases with
wall thicknesses (�/h < 0.05). When �/h is smaller than
0.05, the increase in the Q-factor is negligible. When the
microtube is surrounded by liquid (nL > 1) on the outside,
the index contrast between the microtube wall and liquid is
smaller than the index contrast between the microtube wall
and air. Under these conditions (Figs. 9f and g), the opti-
cal loss caused by the evanescent wave is larger than those
under the other two conditions. Thus, for the ideal tubular
optical microcavities with (ultra-)thin wall, the Q-factors
depend on the index n3 of the liquid medium. The liquid
media inside and outside the microtube result in light loss.

The above studies are performed on ideal microtubes
with Q-factors of Qi. Actually, the fabrication process also
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Figure 9 (a) Cross-sectional schematic views
of a microtube. The microtube has a diameter
of h, wall thickness of � and refractive index of
n2 in the wall. The refractive indices are n1 and
n3 for media inside and outside the microtube,
respectively. The incident light propagates in the
x–y plane and has E field along the z direction.
(b) Q-factors for the m = 40 resonant modes
of the microtubes in (c)–(f) with n2 = 2 in the
tube walls. (c) Q-factors for the m = 40 resonant
modes of the microtubes in (c)–(f) with n2 = 2
+ 0.004i in tube walls. (d)–(g) The microtube is
placed in four kinds of environment: (d) in air
(green line in b and c), (e) with liquid inside and
air outside (black line in b and c), (f) with liquid
outside and air inside (red line in b and c), and
(g) in liquid (blue line in b and c). The liquid has
a refractive index of nL [104].

introduces surface imperfections. In rolled-up microtubes,
the Q-factor Q−1

0 = Q−1
i + Q−1

s.s , where Qs.s is related to
the loss from surface imperfection and cone effects (Q <

Qi, Qs.s and Qs.s < 5000 in rolled-up microtubes). The
diameters of rolled-up tubes vary linearly along the tube
axis, which is called the cone effect. As shown in Fig. 9c,
we simulate the imperfect microtubes by using a complex
refractive index n2 = 2 + 0.004i in the tube walls. For
the tubular optical microcavities with thick walls (�/h >

0.05), under all four conditions, the surface imperfections
(Qs.s) are the main limit of the WGM Q-factors with values
smaller than 2000 (Fig. 9c). In the tubular optical microcav-
ities with (ultra-)thin walls (�/h < 0.05), the liquid medium
influences the surface imperfections more (Fig. 9c). Com-
pared to the tube in air (Fig. 9c, green line), the inside and
outside liquid media (nL > 1) lead to light loss and dra-
matically decrease the Q-factors (black, red, and blue lines
in Fig. 9c).

The experimental and theoretical demonstration inside
and outside the liquid medium indicate that the Q-factor
is reduced by the liquid medium surrounding the tube mi-
crocavities with (ultra-)thin walls (�/h < 0.05). In optical
microcavties with thick walls (�/h > 0.05), the influence
of surface imperfections is more substantial than that of the
elements.

The interaction between the evanescent wave (WGMs)
and surrounding media can be used to modify the optical
microcavities. Dye-doped optical–gain media have been
chosen in microlaser design since 1970s [39, 114, 115].
Various polymeric materials such as PMMA [84, 116],
polystyrene (PS) [7], polyurethane (PU) [115], poly(p-
phenylene-vinylene) (PPV) [25, 117, 118], and poly(1-
vinyl-2-pyrrolidone) (PVP) can be used and the main dyes
include Rh 6G [84], and pyrromethene [7].

The tubular geometry is suitable to contain dye solu-
tions liquid as the gain medium. Compared to the solid gain
medium, liquid dye solutions lead to more applications as
they can be used as carriers of dyes [40, 86, 87, 92] and lu-
minescent quantum dots [31, 70, 85, 119–123] to introduce
special optical properties.

Figure 10 Schematic of TE and TM modes in the optical micro-
tubular resonator.

3.3. Polarization of resonant light

Generally, the spectrum of tubular optical microcavi-
ties is split into two well-known polarization modes,
the transverse-electric (TE) mode and transverse-magnetic
(TM) mode defined by the orientation of electric and mag-
netic fields. However, the definitions of TM polarized and
TE polarized vary. In some references, the TM-polarized
wave has the electric vector parallel to the incident plane
(namely

⇀

r · �B = 0), whereas a TE-polarized wave has the
electric vector perpendicular to the plane of incidence
(namely

⇀

r · �E = 0) [91, 92, 95]. In other references, the
orientation of the electric field of a TE-polarized wave is
parallel to the incident plane but that of the magnetic field of
a TM-polarized wave is parallel to the incident plane [124].
In the TE mode, the electric field is tangential to the micro-
cavity surface whereas in the TM mode, its electric field is
normal to the microcavity surface [9, 72, 104, 125]. In this
review, the following polarization definitions are adopted:
TE modes with the magnetic field vector parallel to the tube
axis and TM modes with the electric field vector parallel to
the tube axis (Fig. 10) [9].

The Q-factors bear a strong relationship to the polar-
ization states. Based on Mie scattering theory, compared
to the TE modes, the TM modes show larger decay in air
[72]. Hence, TM modes are used in experiments and sen-
sors because they have larger Q-factors than the TE modes
normally [47,54,121,126]. Another possible reason for the
polarization dependence is the mode-field expansion, i.e.
the penetration depth of the light wave in the total internal
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reflection process [91]. The penetration depth or the GHS
(Section 3.1), which is induced by the phase shift on re-
flection, is larger in the TE mode (p polarization) than TM
mode (s polarization) [91]. Hence, the TE mode suffers a
larger optical loss at the interface, where the evanescent
wave is possibly coupled with the radiation mode or ab-
sorbed slightly by the surrounding medium [91]. The differ-
ence in the optical loss is thought to affect the polarization
characteristics.

The detection sensitivity of optical microcavities
changes according to the polarization states. The TE modes
exhibit higher sensitivity when the surrounding medium is
changed compared to the TM modes [2]. If the Q-factor
is not very important, it is better to use the TE modes
because the peak shifts are larger than those in the TM
modes for the same change in the liquid index constants
[2]. Under the same Q-factor condition, the TE modes show
higher sensitivities for refractive index detection of the sur-
rounding medium, as verified experimentally [126]. The
TM modes of WGMs resonances of capillaries with sub-
micrometer wall thickness show a smaller wavelength shift
as a function of the refractive index of the medium that
fills the interior [126]. The sensitivity of the TM modes
(50–70 nm/RIU) is lower than those for the TE modes
(130–170 nm/RIU) [126]. Tubes with thin walls are re-
quired in order to produce high-sensitivity sensors [126]
and the self-rolled optical microresonators have superior
performance in this respect [35, 37, 85, 127–129]. The pos-
sible reason for this polarization dependence is the evanes-
cent wave. The TE mode has a larger GHS than the TM
mode at the interface, where the evanescent wave is possi-
bly coupled with and absorbed slightly by the surrounding
medium [91]. Consequently, the TE modes have stronger
interaction with the surrounding medium.

The TM modes and TE modes are important to the ap-
plication of self-rolled optical microcavities [37,47,63,128,
130]. Using the single-scatter-induced coupling mecha-
nism of a pair of counterpropagating high-Q-factor WGMs,
the toroidal microcavity can be used to investigate single
nonspherical nanoparticles with high sensitivity. The non-
spherical particles may produce distinct frequency split-
ting and additional damping for TE and TM WGMs. This
polarization-dependent effect allows the study of the orien-
tation of single biomolecules, molecule–molecule interac-
tion on the microcavity surface, and distinguishing different
inner configurations of similar biomolecules [125, 131].

3.4. 3D optical confinement in a
geometry-defined tube

Besides the intrinsic evanescent wave in the tubular micro-
cavities, light loss along the axis in the microcavities can
degrade the optical properties. Standard WGM microres-
onators such as dielectric microspheres, microdisks, and
microtoroids typically confine the light in a narrow ring
along the equator of the structure by continuous total inter-

nal reflection near the resonator surface [3]. These equato-
rial WGMs have the advantage of an (ultra-)high Q-factor
and small mode volume. Contrary to the localized states in
the optical spherical/spheroidal and bottle microresonators,
the WGMs in a uniform cylindrical or tubular microres-
onator without microfiber coupling are delocalized. Hence,
a circulating light beam in the cylinder eventually radiates
outwards along the cylinder axis and opposite to a spherical
microresonator, an optical cylinder should not have a large
Q-factor.

Two main approaches are employed to improve the op-
tical properties of tubular microcavities. First, when these
microcylinder or microcapillary optical microcavities are
coupled with microfibers, self-interference of the circulat-
ing beam evanescently launched by the microfibers pro-
duces the localized state with a simple exponential depen-
dence on the axial coordinates [132a]. Self-interference of
the beam in the process of circulation gives rise to a large
Q-factor resonant state that is strongly localized along the
axial direction. At present, research on applications of mi-
crocapillaries with tapered microfiber coupling is quite
prevalent. It is noted that light coupling into droplet op-
tical resonators by means of a free-space Gaussian beam
(GB) is investigated through numerical simulations and ex-
periments recently [132b]. Furthermore, an enhancement
of the cavity finesse Q by a factor of about 10 with respect
to CdSe-doped bulk polymer microspheres was found by
Artemyev et al. in 2001 [43]. The concept of photons con-
fined in hollow 3D microspheres optical cavities provides
a microstructure with large potential to study 3D confined
optical modes in the visible spectral range [43]. It is in-
dicated that 3D optical confinement is effective in design-
ing (ultra-)high Q-factor microcavities [43]. Contrary to
the 3D optical confinement in optical spherical/spheroidal
microresonators, the WGMs in one uniform tubular mi-
crocavity without coupling to a microfiber source exhibit
smaller Q-factors (102–103). In experiments involving tubu-
lar microresonators, full control of the optical modes (with
or without fine structure) of the microtube is desirable in
order to observe and utilize single, sharp, as well as spa-
tially and energetically well-localized modes and obtain
(ultra-)high Q-factors. It is a great challenge to overcome
the bottleneck of fabricating special tubular microcavities
with 3D optical confinement. In tubular microcavities, a
slightly nonuniform and even an ideally uniform optical
fiber can perform as well as (ultra-)high Q-factor optical
microresonators that have different type of 3D confinement.
Several tubular microcavities with 3D optical confinement
can be obtained by different methods and here, the basic
theory and simulation method of tubular microcavities with
3D optical confinement are discussed in conjunction with
experimental verification.

3.4.1. Bottle microresonators

The bottle microresonators are prepared by an improved
fiber-drawing process as described in Section 4. Figure 11a
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Figure 11 (a) Concept of the bottle microresonator. In addition
to the radial confinement by continuous total internal reflection
at the resonator surface, the axial confinement of the light is
caused by a harmonic effective potential (dashed line) fixed by
the curvature of the resonator profile. The resulting intensity dis-
tribution is therefore given by the eigenfunctions of the quantum
mechanical harmonic oscillator [15]. The intensity is significantly
enhanced at the so-called “caustics” of the bottle mode, located
at the classical turning points of the harmonic motion. This distin-
guishing feature gives bottle modes a 3D nature in comparison
to equatorial WGMs. (b) Visualizing a q = 4 bottle mode in a
36-µm diameter bottle microresonator. The bottle mode is excited
by 850 nm laser light and visualized via the upconverted green
fluorescence of dopant erbium ions. Scale bar, 30 µm. (adapted
from [15])

defines a harmonic effective potential for the light field
along the resonator axis. Because of the highly prolate
shape, the bottle microresonator gives rise to a class of
WGMs with advantageous properties such as ultrahigh Q-
factors, microscopic mode volumes, and tunability. The re-
sulting axial standing wave structure exhibits a significantly
enhanced intensity at the so-called “caustics” of the bottle
mode located at the turning points of the harmonic motion.
The 3D optical confinement results from the spiral rays ex-
periencing total internal reflection at the fiber surface and
also bouncing along the fiber axis due to reflection from
the regions of tapering near the turning points zt1 and zt2
(Fig. 11a).

The bottle microresonator possesses an equidistant
spectrum of eigenmodes labeled by the “azimuthal quan-
tum number” m, which counts the number of wavelengths
that fit into the circumference of the resonator and the “axial
quantum number” q, which is the number of axial intensity
nodes. The radial quantum number p is fixed to its mini-
mum value p = 1 corresponding to modes located at the
surface of the resonator. As quantum numbers, m, p, and
q are integers. According to the semiclassical quantization
rule for the bottle eigenstates, Wentzel–Kramers–Brillouin
(WKB) quantization along the z-axis produces the equation

that defines the eigenvalues kmpq:

∫ zt2

zt1

(
k2

mpq − μ2
mp

R(z)2

)1/2

dz = π

(
q + 1

2

)
. (24)

Here, R(z) is the bottle shape and μmp depends on the ex-
ternal refractive index and polarization of light. The quan-
tization rules for the bottle states, Eq. (24), can be inverted
and thus enable the determination of the cavity shape from
the spectrum analytically.

For the mode localized near the surface of the fiber,
p(=1) « m and μmp � m. The light will also be confined
along the z-axis, if the component of the wave vector along
the z-axis, kz, has two zeros. Quantization rule Eq. (24)
is identical to the quantum-mechanical WKB quantization
rule with energy Empq = k2

mpq − (m2/R2
0) and potential

U (z) = [m2/R(z)2] − (m2/R2
0). We arrive at the well-

known result that the energy levels Empq are equally spaced
in q with constant dEmpq/dq = 2kmpq·dkmpq/dq � �E for
the quadratic potential U(z). The latter corresponds to the
fiber shape:

R(z) = R0[1 + (�k·z)2]−1/2,

dkmpq/dq = �k = �E ·R0/2m,

and eigenvalues

kmpq =
[

m2

R2
0

+ (q + 1/2)�Em

]1/2

. (25)

Here, �k denotes the curvature of the resonator profile.
The frequency spacing between modes with consecu-

tive quantum numbers q (m) is called the axial (azimuthal)
free spectral range and denoted as �νq (�νm), which can
be derived from the eigenvalues kmp of the wave equation
(∇2 + k2) · E = 0

�vm = vm + 1,q − vm,q = c(km+1,q − km,q ) ≈ c/2πn R0

(26)

�vq = vm,q+1 − vm,q ≈ c�k/2πn. (27)

The azimuthal free spectral range (�νm) is fixed by
the resonator radius. However, the axial mode spacing
(�νq) depends on the curvature of the resonator profile.
Figure 11b indicates the experimentally validated mode
structure by visualizing the fluorescence from a resonator
doped with erbium ions. Therefore, �νq is much smaller
than �νm without significantly affecting the mode volume
of the resonator. With regard to a bottle microresonator with
radius R0 = 17.5 µm and curvature �k = 0.012 µm−1, the
above formula yields �νq = 395 GHz and �νm = 1.9 THz.
It is therefore possible to couple light of any arbitrary fre-
quencies to the bottle microresonator by tuning the bottle
resonance over one azimuthal free spectral range (from m
to m+1). Tuning of the resonance frequency over the spec-
tral spacing between adjacent axial modes enables resonant
insertion of light at any arbitrary frequencies. The Q-factor
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Figure 12 (a) Sketch of a microtube bottle resonator exhibiting
a parabolic lobe on its outside rolling edge. Red arrows illustrate
the circular light propagation by multiple total internal reflections.
(b) SEM image of a microtube bottle resonator. Yellow lines clarify
the edges of the U-shaped mesa. (c) Magnified top view on the
region marked in (b) [48].

of this type of microresonator should be large enough to
avoid radiative loss. The Q-factor of a resonator can be de-
termined by measuring the photon lifetime τ and using the
equation Q = ωτ , where ω = 2πν is the angular optical
frequency. The Q-factor of bottle WGM microcavities is
larger than 108.

3.4.2. Bottle-like self-rolled microtube resonators

The self-rolled-up process has intrinsic advantages in
the fabrication of 3D structures by well-established two-
dimensional lithography on epitaxially grown samples
(Section 4). The radius and wall thickness of rolled-up mi-
crotubes are adjusted by the thickness and composition of
the bilayers during growth and the winding number can
be set by lithography. By adjusting these parameters in the
microtube ring resonators, their mode energies can be pre-
cisely tuned by the winding number. Microtube resonators
have unique properties, for example, very thin layers with
an epitaxially smooth surface.

Microtube resonators with a bottle-like geometry can be
produced by self-rolling from nanomembranes with a struc-
tured rolling edge. Kipp et al. proposed and demonstrated
a microtube resonator by rolling up a strained semiconduc-
tor bilayer with a parabolic lobe, as shown in Fig. 12 [47].
This parabolic lobe turns the structure into a bottle-like
resonator. Two interesting observations are made from the
PL spectra in Fig. 13. First, the spatially integrated spec-
trum shows groups of sharp peaks. In each group, a primary
peak is superposed with a group of secondary peaks with
equal mode spacing in energy. Secondly, according to the
spatially resolved measurement, the modes within a group
are localized in special regions along the tube axis. This
spatial mode distribution demonstrates that the modes are
confined to the lobe position and form a system of higher
axial modes.

The physical understanding of the axial modes can be
described by the simple model using the adiabatic sepa-
ration of the azimuthal and axial propagation of light in
the microtube, as discussed in Section 2.5. On account of
the axial modulation arising from the parabolic lobe of the
microtube, a parabolic axial quasipotential, namely Veff =
az2 + b, appears, where a and b are coefficients and z is
the axial distance from the center of the microtube. This
parabolic potential can lead to groups of axial modes with
equidistant frequencies and confinement of mode distribu-
tion along the axis. The results from the analytical model,
which is further confirmed by the FDTD simulation, agree
well with experimental data [47, 102].

The beauty of the microtube bottle resonators is that
different field patterns and mode dispersions for a desired
application can be precisely tailored. For example, Figs. 13a
and b show PL spectra acquired from microtube resonators
with a triangular and square lobe. Unlike the parabolic lobe,
the axial mode spacing decreases with higher energies in
the triangular lobe and increases in the rectangular one.
Thus, it is possible to tailor the mode dispersion of the axial
modes accurately simply by predefined modulation of the
rolling edge [47].

Recently, Mei and coworkers showed that a bottle-like
resonator could be produced by rolled-up circular oxide
nanomembranes, as shown in Fig. 13c [102]. The PL spec-
tra obtained at room temperature in Fig. 13 show groups
of axial modes. These axial modes originate from axial
modulation due to the uneven thickness distribution along
the microtube axis. Using adiabatic separation, a similar

Figure 13 PL spectra of microtube bottle
resonators with a (a) triangular and (b) rect-
angular lobe. The insets sketch the level
spacing in a (a) triangular and (b) rectangu-
lar potential [48]. (c) The PL spectrum from
the middle of a microtubular cavity rolled
from a circular Y2O3/ZrO2 nanomembrane
(Y2O3/ZrO2, neff � 1.68). The inset shows
the fine structure of a mode with azimuthal
number m = 48 [102].
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axial potential can be obtained leading to the observed ax-
ial modes.

4. Design and fabrication
of tubular microcavities

Effective fabrication methods of WGM microresonator
with a tubular geometry are crucial to optical microde-
vices in lab-on-a-chip systems. Tubular optical microcav-
ities with good optical properties can be readily produced
in the lab from a variety of materials. There are two main
techniques: fiber drawing and self-assembly and they will
be discussed in this section. Other interesting methods and
modification processes will also be touched on briefly.

4.1. Fiber-drawing technique

The traditional and simplest method for the fabrication of
optical fiber/tubes is the fiber-drawing technique [126,133]
that is sometimes also referred to as the heat-and-pull tech-
nique [134]. In the fiber-drawing technique, the diameter
and wall thickness are reduced by heating and pulling the
capillaries. The typical process includes two steps: (1) pre-
form preparation and (2) fiber drawing.

The process can be used to fabricate thin silica cap-
illaries with a submicrometric wall. In the first step, the
intermediate capillaries 150 µm in diameter with a 15-µm
thick wall are prepared from a commercial silica tube using
a fiber-drawing tower. In the second step, the diameter of
the intermediate capillaries is reduced further using a fiber
taper rig. Using this technique, glass capillaries with sub-
micrometer wall and diameters several tens of micrometers
can be produced. To achieve the desirable wall thickness,
the capillary can be further etched with HF (�10%) [133].
Figure 1c shows the scanning electron microscope (SEM)
images of glass capillaries fabricated by the fiber-drawing
technique [22]. Dye-doped (rhodamine B) tubular polymer
(PMMA) optical fibers with different diameters can also be
obtained by this technique at 180 °C [40].

As aforementioned, the tubular microcavities with 3D
optical confinement have better optical performance. Sev-
eral improved techniques have been used to fabricate
WGMs tubular microresonators with the 3D optical con-
finement effect and the most important one is the fabrication
of bottle microresonators.

The fabrication process for bottle microresonators con-
sists of two steps [52,134]. Figure 14 shows the schematic of
the fiber-pulling rig used to prepare ultrathin optical fibers
and bottle microresonators. A uniform hollow fiber can be
obtained by the basic fiber-drawing technique described
above. It can be accomplished using a hydrogen/oxygen
flame or a focused CO2-laser beam [14,52,134,135]. These
hollow fibers are a few millimeters long and have a diam-
eter corresponding to the desired resonator. In the second
step, a bulge between two microtapers is formed on the

Figure 14 Schematic of the fiber pulling rig used to fabricate
ultrathin optical fibers and bottle microresonators. A commercial
optical fiber is clamped to two translation stages. One stage is
mounted on top of the other. The fiber is then heated by a hydro-
gen/oxygen flame with a width of 1 mm. The upper stage, called
the “stretcher”, elongates the heated fiber, while the lower “trans-
lator” moves it relative to the flame (this method is commonly
known as the “fiber-drawing technique”). Alternatively, a focused
CO2-laser beam with a maximum power of 30 W (Synrad, Series
48–2) can be used as a heat source. The laser beam is focused
by a ZnSe lens and only heats a 100–150 µm wide section of the
fiber. A microscope attached to a CMOS camera captures micro-
graphs of the processed fibers. Throughout the ultrathin optical
fiber-pulling process, the transmission of light from a diode laser
emitting at a wavelength of 850 nm is monitored [15].

fiber waist [15]. The microtapers are sequentially produced
by locally heating the fiber waist with the focused CO2-
laser beam while the fiber is stretched slightly. The central
zone of the bulge exhibits parabolic variations in the fiber
diameter and forms the bottle microresonator. By adjusting
the CO2-laser beam spot size, microtaper separation, and
elongation length, the resonator geometry can be fine tuned
to obtain the desirable spectral mode spacing.

Recently, a new family of hybrid optical fibers with
the tubular geometry composed of conductors, semicon-
ductors, and insulators has been obtained by the conven-
tional preform-based fiber-drawing methods. The fabrica-
tion process is illustrated in Fig. 15. A multimaterial tubular
geometry is preformed with larger cross-sectional dimen-
sions and short length. This step is critical to the geometry
(solid or hollow) and composition of the final fiber. The
preform is thermally drawn into multimaterial ‘composite’
fibers consisting of at least two materials having differ-
ent optical and electrical properties, while maintaining the
geometry, increasing the length, and reducing the cross-
sectional dimensions. This fiber-drawing process is usually
performed in vacuum at a high temperature (typically 10−3

torr and 260 °C). The key point here is identification of
materials that can be codrawn and are capable of maintain-
ing the preform geometry in the final fiber. Multimaterial
multifunctional fibers can be fabricated using this method.
Examples include polymers (polyether sulfone (PES), poly-
sulfone (PSu), and polyetherimide (PEI)), metals (Sn, In, Bi
and eutectics of Au, Bi and Sn), and glass compositions such
as As2Se3, As2S3, As40Se50Te10Sn5, and Ge15As25Se15Te45
[136].
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Figure 15 Preform-based fabrication of integrated fiber devices. (a) A chalcogenide semiconducting glass rod is assembled with an
insulating polymer shell and four metal electrodes; and (b), a polymer sheet is rolled around the structure to form a protective cladding.
(c) The high-index chalcogenide glass is evaporated on both sides of a low-index thin polymer film before (d), being rolled around the
cylinder prepared in (a), (b). A polymer layer is wrapped around the coated film for protection. (e) The preform is consolidated in a
vacuum oven and is thermally drawn to mesoscopic-scale fibers. The cross section of the resulting fibers retains the same structure
and relative sizes of the components at the preform level. Reprinted with permission from refs. [8] and [136].

4.2. Self-rolled-up processes

Nanomembrane wrinkles produced by predefined strain en-
gineering with 3D structures have many potential applica-
tions [137]. If the strain gradient is large, the nanomembrane
bends into a curved structure and forms a tubular geometry
[137]. Since 2000, research on self-rolled-up microtubes
fabricated by self-rolling of strained functional layer sys-
tems lifted off from a substrate has been prevalent because
of potential application in different fields [45,46,138]. The
micro- and nanotubes obtained by this method have been
used in optical resonators [9, 35, 37, 127, 129, 139]. Op-
tical resonances in self-rolled tubular microcavities with
subwavelength wall thickness have novel optical proper-
ties and researchers have rolled up a variety of materials
such as metals, semiconductors, insulators, and polymers
[9, 35, 37, 85, 127, 129, 139, 140].

The lift-off technique can be utilized to obtain self-
rolled-up tubular microcavities. This method relies on the
release of strained thin layers from the substrate by se-
lective etching, as schematically illustrated in Fig. 16.
There are two typical procedures for nanomembranes self-
rolling. When semiconductor films are deposited by molec-
ular beam epitaxy (MBE), the nanomembrane shaping step
follows nanomembrane deposition (Fig. 16a) [45, 141].
However, for metal and oxide thin films, glancing-angle
nanomembrane deposition follows sacrificial layer shap-
ing (Fig. 16b) [34, 36, 102]. The typical self-rolled micro-
tubes procedures are described in the following. An etchant-
sensitive film is formed on the substrate as a sacrificial layer
on which the strained layer is deposited. When the strained
layer is freed from the sacrificial layer by selective etching,
its top layer contracts and the bottom layer expands. The
intrinsic stress gradient causes the bilayer to self-assemble
into a tubular microtube. The diameter of microtubes is

tunable by varying the deposition rate, temperature, atmo-
sphere, and layer thickness.

Based on the chemical properties of the strained layer,
different materials such as polymers, oxides, and semicon-
ductors are selected as the sacrificial layer. Different thin
film deposition processes can be used to obtain the strained
layers. A crystalline semiconductor thin film is usually de-
posited by MBE, metal and insulator thin films are de-
posited onto the substrate by electron-beam evaporation,
and polymer thin films are obtained by spin coating.

The self-rolled-up process can produce tubular micro-
cavities by well-established two-dimensional lithography
on epitaxially grown samples. The radius and wall thick-
ness can be adjusted by the thickness and composition of
the bilayers and the winding number can be set by lithog-
raphy. The winding number is determined by the rolling
distance divided by the circumference of self-rolled tubes.
By adjusting these parameters in the microtube ring res-
onators, the mode energies can be precisely tuned based on
the winding number. The ultrathin wall thickness and tun-
able optical properties bode well for lab-in-a-tube systems.

4.3. Sundry methods

In order to enhance the Q-factor and widen the applica-
tions, other methods can be used to produce tubular optical
microcavities.

(1) Rotating deposition on fiber

Rotating deposition proposed by Maqbool et al. pro-
duced aluminum nitride WGM microlasers in 2010 [142].
Rare-earth (RE) ions or Ti-doped AlN films are grown us-
ing radio-frequency (RF) sputtering in pure nitrogen. The
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Figure 16 Illustrations of the formation of self-
rolled-up microtube: (a) inorganic self-rolled-
up procedure; (b) organic-based self-rolled-up
procedure.

thickness and composition of the inorganic films around the
optical fibers is controllable. The optical fibers are clamped
to the rotating metallic substrate holder and during film
deposition, the substrate is rotated constantly to realize
uniform deposition around the fiber (see the schematic in
Fig. 17a) [142]. This process is quite effective in producing
high-index inorganic crystalline tubular WGM microcavi-
ties [142].

(2) Template method

Optical microcavities can be prepared using templates
such as the microchannel glass matrix [54] and porous an-
odic alumina membranes [143]. The typical procedures are
illustrated in Fig. 17b and described below. (a) Choice of
templates: The diameter of the final microcavities is in-
fluenced by the diameter of the channel in the template.
The anodic alumina membrane with uniform pore diameter
is adjustable from 20 to 200 nm [143] and the diameter
of channels in the microchannel glass matrix is around
several micrometers [54]. (b) Filling the microchannels in
the template by the flexible precursor materials: The suit-
able precursor materials are used to fill the channels in
the microchannels of the template. Different solutions, sol,
monomer or fusions at high temperature are suitable as
precursor materials. (c) Solidification. (d) Removal of the
templates. After solidification of the precursor materials,
individual micro-/nanocylinder microcavities are obtained
after removing the templates.

Different kinds of materials including inorganic mate-
rials and polymer cylinders can be obtained by this method.
For instance, Rakovich et al. prepared microtube cavities
with Q-factors up to 3200 using simple vacuum-assisted
wetting and filtration through a microchannel glass matrix
[54]. O’Carroll et al. observed the microcavities effects and
optically pumped the laser in polymer nanowires fabricated
with an anodic alumina membrane template [143].

(3) Electrospinning

Among the fabrication methods to generate one-
dimensional (1D) nanostructures, electrospinning is a
straightforward, cost-effective, and versatile method to pro-
duce nanofibers from a variety of materials such as poly-
mers, inorganic materials, and hybrid compounds [144].
Other complex structures including core/shell fibers can be
obtained by multifluidic coaxial electrospinning. 3D micro-
cavities have been fabricated by relatively simple and con-
trollable electrospinning soft methods [55]. The approach
is based on electrospinning of dye-doped polymer fibers
utilizing this versatile technique to spin fibers of various di-
mensions and geometries including coaxial structures [55].

Besides the aforementioned fabrication methods, pho-
tolithographic and etching procedures are used to prepare
tubular microcavities [145, 146]. With the development of
micro-/nanotechnology, new methods will be introduced.
The ability to combine novel physical and chemical func-
tions (such as quantum dots [141, 147] or upconversion
luminescence [15]) using the proper methods creates enor-
mous opportunities for scientific discovery and research of
optical devices.

5. Applications of tubular
optical microcavities

Excellent fabrication processes and rigorous theoretical
simulation have rendered tubular microcavities useful in
a wide range of applications that take advantage of the
unique optical properties such as refractive index, fluores-
cence, Raman scattering, and optical absorption. Theoret-
ically, the application of tubular optical microcavities is
related to the evanescent wave and geometry. The cylin-
drical channel nature of tubular optical microcavities and
unique properties of fluids can be utilized to design and

Figure 17 (a) Scheme for the rotating
deposition of AlN tubular microlaser [
142]. (b) The formation procedures of
individual microtubes from the template
method [54,143].
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fabricate novel devices with superior performance. The
fluids can be used as carriers of nanoparticles (quantum
dots), cells, and molecular species. In this section, some
of the important applications of WGM tubular microcav-
ities are discussed. Examples include opto-/microfluidics,
microlasers, and bio-/chemsensing.

5.1. Optomicrofluidics

Since its emergence, optofluidics offers a robust platform
for excellent enabling simultaneous delivery of optics and
fluids with microscopic precision. Fluids have unique prop-
erties that cannot be found in solid equivalents, and these
properties can be used to design novel devices that have the
ability to change the optical properties of the fluid medium
in the device by simply replacing the fluid. Other charac-
teristics include the optically smooth interface between two
immiscible fluids, the ability of flowing streams of misci-
ble fluids to create gradients in optical properties by dif-
fusion, and the ability of carrying nanoparticles (quantum
dots), cells, and molecules [148]. Tubular optical microres-
onators possess natural channels for fluid flow and hence,
they are suitable for optomicrofluidic devices and integrated
systems. Microfluidics offers a number of advantages, for
example, use of extremely small amounts of reagents and
samples, ultrahigh sensitivity; high throughput, possible
sample processing before detection, short analysis time, in
situ monitoring, and low cost [120]. The large surface area-
to-volume ratio and mass transport by nondiffusive means
offers the potential for transduction of analytes in seconds
to minutes. Termed “marriage of optics and fluidics” and
“combination of integrated optical and fluidic components
in the same miniaturized system”, optomicrofluidics can
operate on the system level, for example, lab-on-a-chip
or micrototal analysis [56]. In optomicrofluidic devices,
the phenomenon is related to total internal reflection and
evanescent waves play important roles in device fabrica-
tion based on tubular optical microcavities [148]. The first
microfludic device was a miniaturized gas chromatography
(GC) system reported by Terry et al. at Stanford University
in the 1970s [149]. Moon et al. and Fan et al. investigated
optomicrofluidics in tubular structures and the main appli-
cation is the microfluidic laser [82,87,133,150]. In order to
enhance the sensitivity, new structures have been suggested.
For example, ultrahigh sensitivity has been achieved from
an active sensor structure coupled to an optofluidic ring
laser producing a sensitivity of 5930 nm/RIU [51]. This
ultrahigh sensitivity is two orders of magnitude higher than
that of a conventional ring-resonator sensor [51].

The fluid properties can be exploited to produce highly
flexible, tunable, and reconfigurable photonic microde-
vices. The self-rolled nanotechnology not only enables
the fabrication of optomicrofluidic devices, but also shows
great potential in self-rolled microfluidic devices. In 2006,
It is reported that 3D InGaAs/GaAs self-rolled microtubes
can be integrated on substrate as fluidic channels [151].
The results indicate the possibility of using self-rolled mi-
crotubular cavities in microfluidics. In 2007, Luchnikov

et al. reported self-rolled polymer microtubes in microflu-
idics systems [140] and later, Harzim et al. demonstrated
that an optofluidic tubular resonator with a large Q-factor
(2900) and high sensitivity of up to 880 nm/RIU could
be fabricated by the self-rolled-up process based on SiO2
[127]. These are milestone studies promoting the develop-
ment label-free on-chip integration of inorganic self-rolled-
up optical microcavities in lab-in-a-tube optomicrofluidic
devices.

5.2. Microlasers

The acronym LASER is derived from the phrase “light
amplification by stimulated emission of radiation” [152].
The light emission is characteristic of and influenced by the
specific gain medium and resonator [152, 153]. As a basic
building block, micro- or nanolasers with small size and
low power can be integrated on a chip to enable high speed
operation [1,154]. Microcavities provide excellent coupling
of spontaneous emission into lasing modes and a high Q-
factor that consequently leads to low lasing threshold. The
tubular optical microcavities with (ultra-)high Q-factors are
suitable for (ultra-)low threshold microlasers.

Organic semiconductors, dye-doped polymers [155],
dye-doped liquids, quantum dots, and rare-earth-doped in-
organic materials are now popular optical gain dopants in
the field of tubular microlasers. The first demonstration of
dye-doped polymer WGMs microresonators with a tubu-
lar geometry undergoing lasing action was reported over
fifty years ago [114,115,156]. Interest in the study and ap-
plication of tubular WGMs microcavities as low threshold
microlasers has proliferated since then. The first organic
semiconductor microlasers reported had a threshold of
300 μJ/cm2 by Tessler et al. [28] and Frolov et al. dis-
cussed the photo-pumped multimode and single mode las-
ing formed by thin films of luminescent organic semicon-
ductor with a Q-factor of around 5000 [117, 118, 157].
Very low threshold pulse energies of 100 pJ have been
reported in these organic semiconductor microlaser [118]
and Ti-doped AlN WGM microlasers on optical fibers
with a Q-factor higher than 1500 were deposited using
RF sputter-deposition [142]. A threshold power of 24 mW
was observed from this AlN microlaser [142] and Er-doped
upconversion luminescent glass capillaries were used to
fabricate bottle-like tubular microlasers with 3D optical
confinement [14, 135]. Malko demonstrated the regime
of microtubular lasing and WGMs using CdSe nanocrys-
tal quantum dots solids incorporated into microcapillary
tubes in 2002 [158]. Lasing in self-rolled semiconduc-
tor microtubes was reported at room temperature. Self-
organized InGaAs/GaAs quantum dots were incorporated
as the gain medium and the microlaser had an ultralow
threshold (�4 μW) and minimum intrinsic linewidth of
�0.2–0.3 nm at room temperature. The maximum intrin-
sic Q-factor measured under low pump power was �3500
[58]. The typical liquid dye-doped laser used a solution
of organic dye molecules in a solvent such as the op-
tical gain medium [83, 86, 87]. Lasing was achieved by
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Figure 18 (a) The molecular beacon (MB) flu-
orescence is quenched when it is in the closed
state. MB fluorescence is restored upon hy-
bridization with the target DNA. (b) Intracav-
ity DNA detection and differentiation with the
optofluidic ring resonator (OFRR) laser [50].

surrounding a small section of the glass capillary with a
solution of Rh 6G and by coupling the pumping light into
the capillary wall. The Q-factor is higher than 104 and
the lasing threshold pump energy was �100 nJ/pulse at a
pulse duration of 6 ns [86]. The Q-factors of this type of
microcavities are always quite high (>104). Moon et al.
and other groups improved this type of microlaser and
found several unique features. Compared to dye-doped liq-
uid core microlasers in which an optical hollow/solid fiber
was inserted into the same glass capillary, WGM laser os-
cillation was achieved at a low-threshold pump energy of
�200 μJ [87, 150]. Subsequently, this structure was used
to demonstrate laser oscillation with colloidal semiconduc-
tor CdSe/ZnS quantum rods as the lasing gain medium
[122, 159].

Attempts are being made to produce tunable and flexible
microlasers. The luminescent characteristics of Förster or
fluorescence resonance energy transfer (FRET) are used as
the gain medium. Fan and coworkers fabricated optofluidic
FRET lasers using DNA scaffolds (Fig. 18) [50, 160, 161].
The rate of energy transfer depends on many factors such
as the extent of spectral overlap, relative orientation of the
transition dipoles, and most importantly, distance between
the donor and acceptor molecules [162]. As a result, ef-
ficient FRET lasing is achieved at an unusually low ac-
ceptor concentration of micromolar and it is over 1000
times lower than that in conventional optofluidic dye lasers.
The lasing threshold is of the order of μJ/mm2. Various
DNA-scaffold FRET lasers are demonstrated to illustrate
large possibilities in optofluidic laser designs. The work
is paving the way for many applications such as lab-in-a-
tube bio/chemsensing, biocontrolled photonic devices, and
biophysics [50, 160].

A new type of fiber laser proposed by Shapira and
coworkers has found a plethora of unique functions in both
fundamental science and applications [163–165]. Low-
threshold (86 nJ) lasers at nine different wavelengths were
demonstrated throughout the visible and near-infrared re-
gions with an organic laser dye incorporated into a copoly-
mer matrix core [163]. This has led to an important
development in the field: radially isotropic lasing using a
hollow-core Bragg fiber in combination with organic dye-
doped water-solution plugs placed inside the fiber core act-
ing as azimuthally isotropic gain media [164]. This setup

allows new designs to produce highly coherent ring-like
radiation with inherent wavelength scalability and control
over the position, direction, and polarization of the lasing
wavefront [165]. The most important advantage of the liq-
uid dye-dope core microlaser is the ability to integrate with
other optical and microfluidic functions to build complete
“lab-on-a-chip” or “lab-in-a-tube” microsystems and these
new types of microlasers constitute microlight source that
have many applications.

5.3. Bio-/chemsensing

Optical bio-/chemsensors are powerful detection and anal-
ysis tools in biomedical research, healthcare, pharmaceu-
ticals, and environmental monitoring. The typical optical
properties including refractive index [4, 87, 126], fluores-
cence [50, 160, 166], and optical absorption [167], have
been used in microtubular optical resonators to generate
sensing signals. The tubular geometry is suitable for liq-
uids used as carriers of analytes and the evanescent wave
is important to the fabrication of bio-/chemsensing devices
[111]. Therefore, tubular optical microcavities can be used
as effective sensors for liquids [9,35,37], single molecules
[168], DNA [50, 57, 113, 160], proteins [169], virus, bac-
teria, cells [49], and nanoparticles (Fig. 19) [13, 170, 171].
Generally, fluorescence-based detection and label-free de-
tection are the two main protocols implemented in optical
biosensing using a tubular geometry.

Refractive-index changes within the capillary core are
probed by the evanescent field that interacts with molecules
near the inner wall [172]. The interaction between the an-
alytes and evanescent wave increases the path length and
wavelengths of light through the resonation. The effective
refractive-index change leads to an azimuthal mode shift in
the spectra that can be used to detect analytes [111, 170].

The sensitivity of the optofluidic ring resonator (OFRR)
is measured in units of nm per refractive-index unit
(nm/RIU). Different types of microresonators show dif-
ferent sensitivities. The typical approach uses a quartz cap-
illary as the fluidics and ring resonator to form the liquid-
core optical ring resonator. The sensitivity is 16.1 nm/RIU
and the detection limit of this system is around 5×10−6

RIU [4]. The optofluidic ring resonator (OFRR) is able
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Figure 19 Applications of WGM biosensors for
analysis of various biological materials in differ-
ent configurations [13].

to detect HER2 at medically relevant concentrations
in serum ranging from 13 to 100 ng/mL in 30 min [169].
Owing to the large Q-factor, OFRR can achieve a refractive-
index detection limit of 10−7 RIU and mass detection limit
of sub-pg/mm2, on a par with the most sensitive biosen-
sors. The OFRR has been applied to many biomedical
applications including CD4+ and CD8+ T-lymphocyte
detection [49], viral particle detection [173], and DNA de-
tection [50, 57, 113]. The label-free, rapid, and sensitive
optical sensor used in whole-cell detection of CD4+ and
CD8+ T-Lymphocytes, and CD4+ cell lysis detection re-
sults show distinguishable detection ranges around and be-
low 200 CD4+ cells per μL and up to 320 CD4+ cells per
μL [173]. Bulk DNA detection of 10 pM 25-mer has been
achieved and the actual limit of detection is significantly
lower. The mass loading limit of detection is estimated to
be 4 pg/mm2 [57, 113]. Recently, rapid detection of the
cancer biomarker CA15–3 using serological samples from
breast cancer patients was achieved [174]. The device con-
sisted of a microcapillary in a sensitivity of 570 nm/RIU
having a layer of fluorescent silicon quantum dots (QDs)
coated on the channel surface and a Q-factor of 1.2 × 105

was demonstrated [175]. In small-molecule detection,
10 nM biotin was detected with a surface mass density
of 1.6 pg/mm2 and the detection limit was approximately
0.14 pg/mm2 [175].

Self-rolled microtubes with (ultra-)thin walls exhibit
higher sensitivity than glass capillaries and have been used
in lab-in-a-tube sensors [176]. With the development of fab-
rication technology, SiO/SiO2 bilayer self-rolled-up optical
microcavities were used as real-time lab-on-a-chip sensor
[9], and a sensitivity of up to 880 nm/RIU and the minimum
detection limit of 3.4 × 10−4 RIU [37] was achieved from
this kind of optical resonators. Immobilization of DNA and
fluorescent proteins in nanostructured fibers can be used,
among others, for in vivo gene expression and biosensing
applications of the polymer self-rolled microtubes [177].
Various self-rolled microtube structure fabricated from bio-
compatible materials have been applied to cell-culture anal-
ysis, including mouse cells [178], yeast cells [36], neuron

cells [139] and HeLa cells [127,129]. As a suitable alterna-
tive to inorganic materials, organic polymers exhibit better
biocompatibility and can mimic the in vivo microenviron-
ment. They have been used to study the in situ seeding of
yeast cells [140]. A strategy has been proposed to fabri-
cate tubular struc-tures with layered walls made of multiple
types of orientated cells in rolled-up organic tubular struc-
tures. This circumvents the principal structural limitations
of tubular tissue biomimicry [179] and this method may be
widely used in simulation of tubular tissues [179].

5.4. Mechanical sensing and thermometry

High Q-factor WGMs microresonators with a tubular ge-
ometry increase the mechanical and temperature sensitiv-
ity. The mechanical tunability in two spherical resonators
coupled to the evanescent field was analyzed theoretically
and tested experimentally in 1994 [180]. WGMs resonators
possess the morphology-dependent resonance features. The
positions of the WGMs resonances are strain sensitive and
can be tuned in a controlled manner by applying strain with
a piezoelectric transducer. The measured wavelength shifts
yield a linear slope of 0.14 nm/mstrain, in good agreement
with calculated shifts based on published data for the elas-
tic moduli and the strain-optic coefficients for fused quartz
[181]. This process can be used in other tubular resonators
to prepare mechanical sensors. The emission spectra of mi-
croring lasers fabricated from π -conjugated polymer films
cast on nylon microfibers with diameters in the range of 35–
90 µm were studied by applying uniaxial stress with strain
of up to �12%. The laser emission spectra change substan-
tially with the applied stress, showing enhanced sensitivity
to stress over changes induced in the fiber diameter alone
[182]. The ultrahigh Q-factor (3.6 × 108) WGMs “bottle
microresonators” with 3D optical confinement can be fab-
ricated from standard optical glass fibers. The maximum
stress applied to this kind “bottle microresonators” is lim-
ited by the travel range of the bending actuator. It can be
inferred from the frequency shift to be about 35% of the
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Figure 20 Future vision of integrated lab-in-
a-tube system. A single tube consists of thin-
film semiconducting devices, and also multiple
devices distributed over the cross section, with
each device sensitive to a different environmen-
tal parameter (light, heat, acoustic waves, me-
chanical force and so on) [136].

typical damage threshold of the silica resonator structure
[14].

An active, tunable optical fiber can incorporate multiple
microfluidic channels into interior fiber microchannels, and
present temperature-dependent tunability of �0.10 nm/°C
or �0.014 nm/mW of power to the grating microheater
[183]. Suter et al. presented a thorough temperature-
dependence calibration technique for the liquid-core op-
tical ring resonator [16] and their results indicated that the
liquid-core optical ring resonator could be used in ther-
mometry.

5.5. Other applications

Tubular optical microresonators are used in micro-
lasers, optomicrofluidics, and bio-/chemsensors [184]. A
metamaterials-based hyperlens offers the possibility to
break the limitation of the diffraction limit of light. It was
proposed that a magnifying superlens could be constructed
by using cylindrical metamaterials [185]. The rolled-up
nanotechnology is the perfect approach to create these mul-
tilayered stacked structures while at the same time reduc-
ing the number of processing steps required. By simply
rolling up multilayered metals and oxides (or semicon-
ductors), multilayer stacked metamaterials can be created
with a tubular geometry and these multilayered stacked
metamaterials are useful in hyperlens devices for imaging
[70, 176, 186–188].

6. Summary and Outlook

This review summarizes recent progress in the field of op-
tical microresonators with a tubular geometry that boast a
large Q-factor and high sensitivity in terms of fundamental
properties, fabrication protocols, 3D light confinement de-
sign, and applications. Although much research has been
conducted, turning these principle designs into practical
applications still requires more work. Inspired by the appli-
cations and research methods of other WGMs optical mi-
crocavities such as microspheres, microdisks, and toroids,
new and exciting ideas and designs pertaining to WGMs
optical microcavities with the tubular geometry is gaining

much attention in the three areas of new materials, higher
quality, and functional integration.

New materials are needed for next-generation microde-
vices and investigating isolated components in a device
or system is no longer sufficient to solve technological
problems associated with the development of an environ-
mentally benign energy infrastructure [189]. Different in-
organic and organic materials with special functions are
suitable alternatives and upconversion luminescent mate-
rials, electroluminescent materials, piezoelectric materi-
als, and semiconductors can be used to fabricate tubular
optical microtubes. These novel materials can introduce
special electronic, electromechanical, thermoelectric, op-
toelectronic, optomechanical and photonic properties lead-
ing to better and smarter devices. Smart materials such
as metal-insulator phase-transition materials and environ-
mentally sensitive PVA-PAA hydrogel [190], will introduce
new functions to optical microtubes and tunable optical mi-
croresonators comprising smart materials can be used to
fabricate next-generation optical components and optical
bio-/chemsensing devices.

As one basic parameter, the Q-factor is crucial to appli-
cations of optical microcavities. So far, optical microcav-
ities with (ultra-)large Q-factors have more applications
than ones with smaller Q-factor counterparts. However,
the structures in WGM resonators with a small Q-factor
facilitates coupling of light to the resonant modes lead-
ing to substantial enhancement in the light path in the ac-
tive materials and subsequently improved absorption [191].
Cavity-enhanced radiation-pressure coupling of the optical
and mechanical degrees of freedom gives rise to a range
of optomechanical phenomena, particularly providing a
route to the quantum regime of mesoscopic mechanical
oscillators [192]. Micro- and nano-optomechanics has re-
cently attracted great interest because of applications rang-
ing from mechanical sensing to signal processing as well
as fundamental research of mesoscale quantum mechanics
[193, 194].

Future development of tubular optical microresonators
lies in many aspects including fundamental science, en-
gineering, and applications. Future research will produce
more sophisticated functionalities such as truly multifunc-
tional fabrics. The evanescent-wave effect should not be
ignored in future research and better understanding of
the evanescent wave and interactions with materials with
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special functions will lead to better tubular optical micro-
cavities in complex systems with integrated functions. One
typical example is the multimaterials multifunctional fiber
that can see, hear, sense, and communicate (Fig. 20) [191]
and lab-in-a-tube microsystem [38]. Continuous efforts are
expected to bring creative ideas to enable wider applications
of microcavities and better micro- and nanosystems.

Acknowledgements. This work is supported by the Nat-
ural Science Foundation of China (Nos. 61008029 and
51102049), the Program for New Century Excellent Talents
in University (No. NCET-10-0345), the Shanghai Pujiang Pro-
gram (No.11PJ1400900), the Specialized Research Fund for
the Doctoral Program of Higher Education of China (No.
20110071120009), the China Postdoctoral Science Foundation
Funded Project (No. 2011M500731), the Hong Kong Research
Grants Council (RGC) General Research Funds (GRF) Nos.
112510 and 112212, and the City University of Hong Kong Ap-
plied Research Grant (ARG) 9667066.

Received: 15 March 2013, Revised: 3 June 2013,
Accepted: 5 June 2013

Published online: 1 July 2013

Key words: Tubular geometry, WGM, microcavity, resonator,
tube, sensor.

Jiao Wang completed her BS degrees
in Materials Chemistry at Lanzhou Uni-
versity, China (2006). She received her
PhD Degree in Materials Chemistry and
Physics on rare-earth luminescent mate-
rials from the Key Laboratory of Trans-
parent Optofunctional Inorganic Materi-
als of Chinese Academy of Sciences,
Shanghai Institute of Ceramics, Chinese
Academy of Sciences, China (2011). She

currently holds a postdoctoral fellowship in the Department of
Materials Science in Fudan University, China. Her current re-
search interest focuses on optical properties and applications
of optical microcavities and metamaterials.

Tianrong Zhan received the Ph.D. de-
gree in Physics from Fudan University,
China, in 2012, where he conducted re-
search in the field of photonic crystals
and plasmonics. He went onto research
tubular optical microcavities at Fudan
University as a research assistant. He is a
Post-doctoral Scholar at the University of
Delware since 2013. His current research

interests include metamaterials and graphene plasmonics.

Gaoshan Huang received his Ph.D. in
condensed-matter physics at the Nanjing
University, China in 2007. After gradu-
ation, he worked in IFW Dresden, Ger-
many as a guest scientist for two years.
Then he moved to IMRE, Singapore as a
research engineer. In 2010, he joined the
Department of Materials Science, Fudan
University, China, as an associate profes-

sor. His current research interest is the fabrication and char-
acterization of low-dimensional structures.

Paul K Chu received his PhD in chem-
istry from Cornell University and is
presently Chair Professor of Materials
Engineering in the City University of Hong
Kong. His research activities encompass
plasma surface engineering and mate-
rials science. He is Chairman of the
Plasma-Based Ion Implantation (PBII&D)
International Committee, a member of

the Ion Implantation Technology (IIT) International Commit-
tee and IEEE Nuclear and Plasma Science Society Fellow
Evaluation Committee, senior editor of IEEE Transactions on
Plasma Science, and associate editor of Materials Science &
Engineering Reports. He is a Fellow of the APS, AVS, IEEE,
and MRS.

Yongfeng Mei received his BS and MS in
physics from Nanjing University and PhD
in physics and materials science from
City University of Hong Kong. He is a
full professor in materials chemistry and
physics in the Department of Materials
Science in Fudan University. Before that,
he worked as a post-doctoral researcher
in the Max Planck Institute for Solid State
Research and then led a research group

in the Leibniz Institute for Solid State and Materials Research,
Dresden. His research interest focuses on the development
of novel inorganic nanomembranes and their properties in op-
tics, optoelectronics and micro-/nanoscale mechanics.

References

[1] M. Smit, J. van der Tol, and M. Hill, Laser Photon. Rev. 6,
1–13 (2012).

[2] V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum
Electron. 12, 15–32 (2006).

[3] A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum
Electron. 12, 3–14 (2006).

[4] I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda,
H. Oveys, M. Zourob, and X. D. Fan, IEEE Sens. J. 7,
28–35 (2007).

[5] Y. Yamamoto and R. E. Slusher, Phys. Today 46, 66–73
(1993).

[6] K. J. Vahala, Nature 424, 839–846 (2003).
[7] M. Kuwatagonokami, R. H. Jordan, A. Dodabalapur,

H. E. Katz, M. L. Schilling, and R. E. Slusher, Opt. Lett.
20, 2093–2095 (1995).

[8] M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopou-
los, and Y. Fink, Adv. Mater. 18, 845–849 (2006).

[9] G. Huang, V. A. Bolanos Quinones, F. Ding, S.
Kiravittaya, Y. Mei, and O. G. Schmidt, ACS Nano 4, 3123–
3130 (2010).

[10] J. Hecht, Opt. Photon. News 10, 26–30 (1999).
[11] L. Rayleigh, Scientific Papers 5, 617–620 (1912).

www.lpr-journal.org C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



LASER
& PHOTONICS
REVIEWS

544 J. Wang et al.: Tubular optical microcavity

[12] A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin,
G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, Laser
Photon. Rev. 4, 457–482 (2010).

[13] F. Vollmer and S. Arnold, Nature Methods 5, 591–596
(2008).

[14] M. Poellinger, D. O’Shea, F. Warken, and A. Rauschen-
beutel, Phys. Rev. Lett. 103, 053901 (2009).

[15] D. O’Shea, C. Junge, M. Poellinger, A. Vogler, and A.
Rauschenbeutel, Appl. Phys. B 105, 129–148 (2011).

[16] J. D. Suter, I. M. White, H. Y. Zhu, and X. D. Fan, Appl.
Opt. 46, 389–396 (2007).

[17] C. G. B. Garrett, W. Kaiser, and W. L. Bond, Phys. Rev.
124, 1807–1809 (1961).

[18] S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang,
Science 231, 486–488 (1986).

[19] D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J.
Vahala, Nature 421, 925–928 (2003).

[20] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De
Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D.
Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47–73
(2012).

[21] S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon,
Laser Photon. Rev. 6, 145–177 (2012).

[22] V. Zamora, A. Diez, M. V. Andres, and B. Gimeno, Pho-
tonic. Nanostruct. 9, 149–158 (2011).

[23] M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85,
74–77 (2000).

[24] S. Lacey, H. Wang, D. H. Foster, and J. U. Nockel, Phys.
Rev. Lett. 91, 4 (2003).

[25] S. V. Frolov, A. Fujii, D. Chinn, Z. V. Vardeny, K. Yoshino,
and R. V. Gregory, Appl. Phys. Lett. 72, 2811–2813 (1998).

[26] Y. Yoshida, T. Nishimura, A. Fujii, M. Ozaki, and K.
Yoshino, Appl. Phys. Lett. 86, 141903 (2005).

[27] H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K.
Yamashita, and K. Oe, Appl. Phys. Lett. 95, 033306 (2009).

[28] N. Tessler, G. J. Denton, and R. H. Friend, Nature 382,
695–697 (1996).

[29] Z. Li and D. Psaltis, Microfluid. Nanofluid. 4, 145–158
(2008).

[30] Y. Mei, G. Huang, A. A. Solovev, E. B. Urena, I. Moench, F.
Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt,
Adv. Mater. 20, 4085–4090 (2008).

[31] P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil,
Appl. Phys. Lett. 95, 191115 (2009).

[32] C. F. Wang, Y. S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J.
E. Butler, Appl. Phys. Lett. 90, 081110 (2007).

[33] J. Ward and O. Benson, Laser Photon. Rev. 5, 553–570
(2011).

[34] G. S. Huang, S. Kiravittaya, V. A. B. Quinones, F. Ding,
M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt,
Appl. Phys. Lett. 94, 141901 (2009).

[35] A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang,
D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, Appl.
Phys. Lett. 93, 094106 (2008).

[36] G. S. Huang, Y. F. Mei, D. J. Thurmer, E. Coric, and O. G.
Schmidt, Lab Chip 9, 263–268 (2009).

[37] S. M. Harazim, V. A. Bolanos Quinones, S. Kiravittaya, S.
Sanchez, and O. Schmidt, Lab Chip 12, 2649–2655 (2012).

[38] E. J. Smith, W. Xi, D. Makarov, I. Monch, S. Harazim,
V. A. Bolanos Quinones, C. K. Schmidt, Y. Mei, S. Sanchez,
and O. G. Schmidt, Lab Chip 12, 1917–1931 (2012).

[39] H. P. Weber and R. Ulrich, Appl. Phys. Lett. 19, 38–40
(1971).

[40] M. Kailasnath, V. P. N. Nampoori, and P. Radhakrishnan,
Pramana J. Phys. 75, 923–927 (2010).

[41] J. C. Knight, H. S. T. Driver, and G. N. Robertson, Opt.
Lett. 18, 1296–1298 (1993).

[42] J. C. Knight, H. S. T. Driver, and G. N. Robertson, J. Opt.
Soc. Am. B 11, 2046–2053 (1994).

[43] M. V. Artemyev, U. Woggon, and R. Wannemacher, Appl.
Phys. Lett. 78, 1032–1034 (2001).

[44] P. Bianucci, X. Wang, J. G. C. Veinot, and A. Meldrum,
Opt. Exp. 18, 8466–8481 (2010).

[45] V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V.
Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T.
A. Gavrilova, Physica E 6, 828–831 (2000).

[46] O. G. Schmidt and K. Eberl, Nature 410, 168–168 (2001).
[47] T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann,

Phys. Rev. Lett. 96, 077403 (2006).
[48] C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn,

D. Heitmann, and T. Kipp, Phys. Rev. Lett. 101, 127403
(2008).

[49] J. T. Gohring and X. D. Fan, Sensors 10, 5798–5808 (2010).
[50] Y. Sun and X. Fan, Angew. Chem. Int. Ed. 51, 1236–1239

(2012).
[51] X. Zhang, L. Ren, X. Wu, H. Li, L. Liu, and L. Xu, Opt.

Exp. 19, 22242–22247 (2011).
[52] M. Sumetsky, Opt. Lett. 29, 8–10 (2004).
[53] M. Poellinger and A. Rauschenbeutel, Opt. Exp. 18, 17764–

17775 (2010).
[54] Y. P. Rakovich, S. Balakrishnan, J. F. Donegan, T. S. Perova,

R. A. Moore, and Y. K. Gun’ko, Adv. Funct. Mater. 17,
1106–1114 (2007).

[55] A. J. Das, C. Lafargue, M. Lebental, J. Zyss, and K. S.
Narayan, Appl. Phys. Lett. 99, 263303 (2011).

[56] H. Schmidt and A. R. Hawkins, Nature Photon. 5, 598–604
(2011).

[57] J. D. Suter, D. J. Howard, H. D. Shi, C. W. Caldwell, and
X. D. Fan, Biosens. Bioelectron. 26, 1016–1020 (2010).

[58] F. Li and Z. Mi, Opt. Exp. 17, 19933–19939 (2009).
[59] A. Taflove and S. C. Hagness, Computational Electro-

dynamics: The Finite-Difference Time-Domain Method
(Artech, Norwood, MA, 2000).

[60] K. S. Yee, IEEE Trans. Antennas Propagat. AP-14, 302–
307 (1966).

[61] J.-P. Berenger, J. Comput. Phys. 114, 185–200 (1994).
[62] S. D. Gedney, IEEE Trans. Antennas Propagat. 44, 1630–

1639 (1996).
[63] M. Hosoda and T. Shigaki, Appl. Phys. Lett. 90, 181107

(2007).
[64] P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos,

Phys. Rev. B 73, 165125 (2006).
[65] A. Fang, T. Koschny, M. Wegener, and C. M. Soukoulis,

Phys. Rev. B 79, 241104 (2009).
[66] A. E. Siegman, Lasers (University Science Books, Mill

Valley, Calif, USA, 1986).

C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org



REVIEW
ARTICLE

Laser Photonics Rev. 8, No. 4 (2014) 545

[67] P. G. Ciarlet, The Finite Element Method for Elliptic
Problems (North-Holland, Amsterdam, New York, Oxford,
1978).

[68] G. Strang and G. J. Fix, An Analysis of the Finite Ele-
ment Method (Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1973).

[69] O. C. Zienkiewicz, The Finite Element Method (McGraw-
Hill, London, 1977).

[70] E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, Nano Lett.
10, 1–5 (2009).

[71] J. T. Katsikadelis, Boundary Elements Theory and Appli-
cations (Elsevier Science, Oxford, 2002).

[72] T. Zhan, C. Xu, F. Zhao, Z. Xiong, X. Hu, G. Huang, Y.
Mei, and J. Zi, Appl. Phys. Lett. 99, 211104 (2011).

[73] H. C. van de Hulst, Light Scattering by Small Particles
(Dover, New York, 1981).

[74] X. Hu, C. T. Chan, K.-M. Ho, and J. Zi, Phys. Rev. Lett.
106, 174501 (2011).

[75] Z. Ruan and S. Fan, Phys. Rev. Lett. 105, 013901 (2010).
[76] C. Strelow, C. M. Schultz, H. Rehberg, M. Sauer, H.

Welsch, A. Stemmann, C. Heyn, D. Heitmann, and T. Kipp,
Phys. Rev. B 85, 155329 (2012).

[77] K. M. Lee, P. T. Leung, and K. M. Pang, J. Opt. Soc. Am.
B 16, 1418–1430 (1999).

[78] S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weis-
berg, J. D. Joannopoulos, and Y. Fink, Phys. Rev. E 65,
066611 (2002).

[79] L. Ma, S. Kiravittaya, V. A. B. Quinones, S. Li, Y. Mei, and
O. G. Schmidt, Opt. Lett. 36, 3840–3842 (2011).

[80] F. Goos and H. Hänchen, Ann. Phys. 436, 333–346 (1947).
[81] E. Hecht, Optics (Addison-Wesley, Reading, Mass, 1998).
[82] H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee,

Appl. Phys. Lett. 84, 4547–4549 (2004).
[83] E. P. Ippen and C. V. Shank, Appl. Phys. Lett. 21, 301–302

(1972).
[84] T. Kobayashi and N. Byrne, Appl. Phys. Lett. 99, 153307

(2011).
[85] K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stem-

mann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D.
Heitmann, and T. Kipp, Nano Lett. 10, 627–631 (2010).

[86] A. Shevchenko, K. Lindfors, S. C. Buchter, and M. Kaivola,
Opt. Commun. 245, 349–353 (2005).

[87] H. J. Moon, Y. T. Chough, and K. An, Phys. Rev. Lett. 85,
3161–3164 (2000).

[88] C. W. Chen, H. P. Chiang, D. P. Tsai, and P. T. Leung, Appl.
Phys. B 107, 111–118 (2012).

[89] W. W. Deng, S. P. Wu, and G. X. Li, Opt. Commun. 285,
2668–2674 (2012).

[90] X. Chen, X. J. Lu, P. L. Zhao, and Q. B. Zhu, Opt. Lett. 37,
1526–1528 (2012).

[91] H. Gilles, S. Girard, and J. Hamel, Opt. Lett. 27, 1421–1423
(2002).

[92] M. Saito and K. Koyama, J. Opt. 14, 065002 (2012).
[93] K. Artmann, Ann. Phys.-Berlin 2, 87–102 (1948).
[94] S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P.

Zhang, and X. D. Fan, Opt. Exp. 15, 15523–15530 (2007).
[95] G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. Nunzi

Conti, D. Ristic, and S. Soria, Riv. Nuovo Cimento 34,
435–488 (2011).

[96] J. R. Schwesyg, T. Beckmann, A. S. Zimmermann, K. Buse,
and D. Hacrtle, Opt. Exp. 17, 2573–2578 (2009).

[97] M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, J.
Opt. Soc. Am. B 17, 1051–1057 (2000).

[98] P. K. Tien, Appl. Opt. 10, 2395–2413 (1971).
[99] V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko,

Phys. Lett. A 137, 393–397 (1989).
[100] D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed,

and H. J. Kimble, Opt. Lett. 23, 247–249 (1998).
[101] M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko,

Opt. Lett. 21, 453–455 (1996).
[102] J. Wang, T. Zhan, G. Huang, X. Cui, X. Hu, and Y. Mei,

Opt. Exp. 20, 18555–18567 (2012).
[103] H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee,

Opt. Commun. 235, 401–407 (2004).
[104] F. Zhao, T. Zhan, G. Huang, Y. Mei, and X. Hu, Lab Chip

12, 3798–3802 (2012).
[105] V. A. Bolans Quines, G. Huang, J. D. Plumhof, S. Kiravit-

taya, A. Rastelli, Y. Mei, and O. G. Schmidt, Opt. Lett. 34,
2345–2347 (2009).

[106] S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and
R. A. Logan, Appl. Phys. Lett. 60, 289–291 (1992).

[107] B. E. Little and S. T. Chu, Opt. Lett. 21, 1390–1392 (1996).
[108] M. L. Gorodetsky and V. S. Ilchenko, J. Opt. Soc. Am. B

16, 147–154 (1999).
[109] F. Li, Z. T. Mi, and S. Vicknesh, Opt. Lett. 34, 2915–2917

(2009).
[110] F. Luan, E. Magi, T. X. Gong, I. Kabakova, and B. J. Eggle-

ton, Opt. Lett. 36, 4761–4763 (2011).
[111] Y. Z. Sun and X. D. Fan, Anal. Bioanal. Chem. 399, 205–

211 (2011).
[112] I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Y. Zhang,

Appl. Phys. Lett. 89, 191106 (2006).
[113] J. D. Suter, I. M. White, H. Y. Zhu, H. D. Shi, C. W.

Caldwell, and X. D. Fan, Biosens. Bioelectron. 23, 1003–
1009 (2008).

[114] R. Ulrich and H. P. Weber, App. Phys. Lett. 20, 38–40
(1972).

[115] R. Ulrich and H. P. Weber, Appl. Opt. 11, 428–434 (1972).
[116] S. X. Dou, E. Toussaere, T. Ben-Messaoud, A. Potter, D.

Josse, G. Kranzelbinder, and J. Zyss, Appl. Phys. Lett. 80,
165–167 (2002).

[117] S. V. Frolov, Z. V. Vardeny, and K. Yoshino, Appl. Phys.
Lett. 72, 1802–1804 (1998).

[118] S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino,
Phys. Rev. B 56, R4363–R4366 (1997).

[119] S. I. Shopova, J. M. Cupps, P. Zhang, E. P. Henderson, S.
Lacey, and X. D. Fan, Opt. Exp. 15, 12735–12742 (2007).

[120] C. H. Vannoy, A. J. Tavares, M. O. Noor, U. Uddayasankar,
and U. J. Krull, Sensors 11, 9732–9763 (2011).

[121] C. P. K. Manchee, V. Zamora, J. W. Silverstone,
J. G. C. Veinot, and A. Meldrum, Opt. Exp. 19, 21540–
21551 (2011).

[122] M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U.
Banin, Adv. Mater. 14, 317–321 (2002).

[123] X. L. Li, J. Phys. D: Appl. Phys. 41, 193001 (2008).
[124] E. Hecht, Optics (Addison-Wesley, Reding, Mass, 1998).
[125] X. Yi, Y.-F. Xiao, Y. Li, Y.-C. Liu, B.-B. Li, Z.-P. Liu, and

Q. Gong, Appl. Phys. Lett. 97, 203705 (2010).

www.lpr-journal.org C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



LASER
& PHOTONICS
REVIEWS

546 J. Wang et al.: Tubular optical microcavity

[126] V. Zamora, A. Diez, M. V. Andres, and B. Gimeno, Opt.
Exp. 15, 12011–12016 (2007).

[127] S. M. Harazim, W. Xi, C. K. Schmidt, S. Sanchez, and
O. G. Schmidt, J. Mater. Chem. 22, 2878–2884 (2012).

[128] E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez,
and O. G. Schmidt, Nano Lett. 11, 4037–4042 (2011).

[129] E. J. Smith, W. Xi, D. Makarov, I. Monch, S. Harazim,
V. A. B. Quinones, C. K. Schmidt, Y. F. Mei, S. Sanchez,
and O. G. Schmidt, Lab Chip 12, 1917–1931 (2012).

[130] V. A. B. Quinones, G. Huang, J. D. Plumhof, S. Kiravittaya,
A. Rastelli, Y. Mei, and O. G. Schmidt, Opt. Lett. 34, 2345–
2347 (2009).

[131] X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li,
and Q. Gong, Phys. Rev. A 83, 023803 (2011).

[132] a) M. Sumetsky, Opt. Lett. 35, 2385–2387 (2010); b) N.
Gaber, M. Malak, X. Yuan, K. N. Nquyen, P. Basset, E.
Richalot, D. Angelescu, T. Bourouina, Lab Chip, 13, 826–
833, 2013

[133] I. M. White, H. Oveys, and X. D. Fan, Opt. Lett. 31, 1319–
1321 (2006).

[134] J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey,
K. Deasy, and S. G. N. Chormaic, Rev. Sci. Instrum. 77,
083105 (2006).

[135] M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas,
Appl. Phys. Lett. 100, 081108 (2012).

[136] A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K.
Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y.
Fink, Nature Mater. 6, 336–347 (2007).

[137] G. Huang and Y. Mei, Adv. Mater. 24, 2517–2546 (2012).
[138] A. Cho, Science 313, 164–165 (2006).
[139] M. Yu, Y. Huang, J. Ballweg, H. Shin, M. Huang, D. E.

Savage, M. G. Lagally, E. W. Dent, R. H. Blick, and J. C.
Williams, ACS Nano 5, 2447–2457 (2011).

[140] V. Luchnikov, L. Ionov, and M. Stamm, Macromol. Rapid
Commun. 32, 1943–1952 (2011).

[141] T. Angelova, N. Shtinkov, T. Ivanov, V. Donchev, A.
Cantarero, C. Deneke, O. G. Schmidt, and A. Cros, Appl.
Phys. Lett. 100, 201904 (2012).

[142] M. Maqbool, K. Main, and M. Kordesch, Opt. Lett. 35,
3637–3639 (2010).

[143] D. O’Carroll, I. Lieberwirth, and G. Redmond, Nature Nan-
otechnol. 2, 180–184 (2007).

[144] Z. Hou, G. Li, H. Lian, and J. Lin, J. Mater. Chem. 22,
5254–5276 (2012).

[145] J. D. Lin, Y. Z. Huang, Q. F. Yao, X. M. Lv, Y. D. Yang,
J. L. Xiao, and Y. Du, Electron. Lett. 47, 929–930
(2011).

[146] K. Scholten, X. Fan, and E. T. Zellers, Appl. Phys. Lett. 99,
141108 (2011).

[147] S. Vicknesh, F. Li, and Z. Mi, Appl. Phys. Lett. 94, 081101
(2009).

[148] D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381–386
(2006).

[149] S. C. Terry, J. H. Jerman, and J. B. Angell, IEEE Trans.
Electron Devices 26, 1880–1886 (1979).

[150] H. J. Moon, Y. T. Chough, J. B. Kim, K. W. An, J. H. Yi,
and J. Lee, Appl. Phys. Lett. 76, 3679–3681 (2000).

[151] D. J. Thurmer, C. Deneke, Y. Mei, and O. G. Schmidt, Appl.
Phys. Lett. 89, 223507 (2006).

[152] N. Tessler, Adv. Mater. 11, 363–370 (1999).

[153] I. D. W. Samuel, E. B. Namdas, and G. A. Turnbull, Nature
Photon. 3, 546–549 (2009).

[154] H. Altug, D. Englund, and J. Vuckovic, Nature Phys. 2,
484–488 (2006).

[155] I. D. W. Samuel and G. A. Turnbull, Chem. Rev. 107, 1272–
1295 (2007).

[156] L. N. Deryugin, I. V. Cheremiskin, and T. K. Chekhlova,
Sov. J. Quant. Electron. 5, 439–442 (1975).

[157] S. V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat,
M. Taraguchi, T. Masuda, K. Yoshino, and Z. V. Vardeny,
Adv. Mater. 10, 869–872 (1998).

[158] A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A.
Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov,
Appl. Phys. Lett. 81, 1303–1305 (2002).

[159] M. Kazes, D. Y. Lewis, and U. Banin, Adv. Funct. Mater.
14, 957–962 (2004).

[160] Y. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X. Fan,
Proc. Natl. Acad. Sci. USA 107, 16039–16042 (2010).

[161] S. I. Shopova, J. M. Cupps, P. Zhang, E. P. Henderson, S.
Lacey, and X. Fan, Opt. Exp. 15, 12735–12742 (2007).

[162] K. E. Sapsford, L. Berti, and I. L. Medintz, Angew. Chem.
Int. Ed. 45, 4562–4588 (2006).

[163] O. Shapira, K. Kuriki, N. D. Orf, A. F. Abouraddy, G.
Benoit, J. F. Viens, A. Rodriguez, M. Ibanescu, J. D.
Joannopoulos, Y. Fink, and M. M. Brewster, Opt. Exp. 14,
3929–3935 (2006).

[164] A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J.
D. Joannopoulos, and Y. Fink, Nature Photon. 6, 229–233
(2012).

[165] A. A. Fotiadi and P. Megret, Nature Photon. 6, 217–219
(2012).

[166] Y. Sun, J. D. Suter, and X. D. Fan, Opt. Lett. 34, 1042–1044
(2009).

[167] G. Farca, S. I. Shopova, and A. T. Rosenberger, Opt. Exp.
15, 17443–17448 (2007).

[168] H. Li and X. D. Fan, Appl. Phys. Lett. 97, 011105 (2010).
[169] J. T. Gohring, P. S. Dale, and X. D. Fan, Sens. Actuators

B-Chem. 146, 226–230 (2010).
[170] X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D.

Suter, and Y. Z. Sun, Anal. Chim. Acta 620, 8–26 (2008).
[171] H. Li, Y. B. Guo, Y. Z. Sun, K. Reddy, and X. D. Fan, Opt.

Exp. 18, 25081–25088 (2010).
[172] H. Y. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. D.

Fan, Anal. Chem. 79, 930–937 (2007).
[173] H. Y. Zhu, I. M. White, J. D. Suter, M. Zourob, and

X. D. Fan, Analyst 133, 356–360 (2008).
[174] H. Y. Zhu, P. S. Dale, C. W. Caldwell, and X. D. Fan, Anal.

Chem. 81, 9858–9865 (2009).
[175] C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C.

Veinot, and A. Meldrum, Opt. Exp. 19, 21540 (2011).
[176] C. Deneke and O. G. Schmidt, Appl. Phys. Lett. 85, 2914–

2916 (2004).
[177] M. T. Todaro, L. Blasi, C. Giordano, A. Rizzo, R. Cingolani,

G. Gigli, A. Passaseo, and M. D. Vittorio, Nanotechnology
21, 245305 (2010).

[178] E. J. Smith, S. Schulze, S. Kiravittaya, Y. F. Mei, S.
Sanchez, and O. G. Schmidt, Nano Lett. 11, 4037–4042
(2010).

[179] B. Yuan, Y. Jin, Y. Sun, D. Wang, J. Sun, Z. Wang, W.
Zhang, and X. Jiang, Adv. Mater. 24, 890–896 (2012).

C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org



REVIEW
ARTICLE

Laser Photonics Rev. 8, No. 4 (2014) 547

[180] V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin,
Opt. Commun. 107, 41–48 (1994).

[181] A. L. Huston and J. D. Eversole, Opt. Lett. 18, 1104–1106
(1993).

[182] A. Tulek and Z. V. Vardeny, Appl. Phys. Lett. 91, 121102
(2007).

[183] P. Mach, M. Dolinski, K. W. Baidwin, and J. A. Rogers,
Appl. Phys. Lett. 80, 4294 (2002).

[184] D. Erickson, D. Sinton, and D. Psaltis, Nature Photon. 5,
583–590 (2011).

[185] Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science
315, 1686–1686 (2007).

[186] C. Deneke, U. Zschieschang, H. Klauk, and O. G. Schmidt,
Appl. Phys. Lett. 89, 263110 (2006).

[187] C. Deneke, W. Sigle, U. Eigenthaler, P. A. van Aken, G.
Schutz, and O. G. Schmidt, Appl. Phys. Lett. 90, 263107
(2007).

[188] C. Deneke, R. Songmuang, N. Y. Jin-Phillipp, and
O. G. Schmidt, J. Phys. D: Appl. Phys. 42, 103001
(2009).

[189] P. Yang and J.-M. Tarascon, Nature Mater. 11, 560–563
(2012).

[190] W. Li, G. Huang, H. Yan, J. Wang, Y. Yu, X.
Hu, X. Wu, and Y. Mei, Soft Matter 8, 3103–3107
(2012).

[191] Y. Yao, J. Yao, V. K. Narasimhan, Z. Ruan, C. Xie, S. Fan,
and Y. Cui, Nature Commun. 3, 664 (2011).

[192] G. Anetsberger, R. Riviere, A. Schliesser, O. Arcizet,
and T. J. Kippenberg, Nature Photon. 2, 627–633
(2008).

[193] X. Sun, K. Y. Fong, C. Xiong, W. H. P. Pernice, and H. X.
Tang, Opt. Exp. 19, 22316–22321 (2011).

[194] K. Srinivasan, H. Miao, M. T. Rakher, M. Davanco, and V.
Aksyuk, Nano Lett. 11, 791–797 (2011).

www.lpr-journal.org C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


