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A B S T R A C T

Optical modes in axially asymmetric microtube resonators made by dielectric materials are calculated by means
of a semi-analytical approach. The Helmholtz equation for the microtube resonators can be separately solved by
decomposing the mode field profile into two parts, i.e., cross-section plane and axial direction. Effective
refractive index theory is used to link between the above two parts. Analytic axial fields can be approximated by
Airy functions while conventional whispering-gallery mode fields written in term of Bessel functions are
characteristics of the field in the cross-section plane. The validity of the semi-analytical formulation is confirmed
by comparing with finite element simulations.

1. Introduction

Optical resonators (or cavities) are interesting structures, which
confine light in three dimensions (3D) for both fundamental properties
and engineering applications [1–5]. For instance, the quantum effi-
ciency of single photon devices can be enhanced when the light source
is placed into a resonator [4]. Moreover, conventional lasers (e.g., the
gas, solid state, and semiconductor lasers) must contain at least one
resonator configuration [5]. Among high-quality optical resonators,
whispering-gallery mode (WGM) resonators have gained much atten-
tion [2,6]. Conventional WGM resonators for confining light in visible-
to-near infrared ranges are microdisks (Fig. 1(a)), microrings
(Fig. 1(b)), and microspheres (Fig. 1(c)) [2]. Each structure has its
own advantages, which can be utilized in any specific designs or
applications. Microtubes (Fig. 1(d)), which are relatively new WGM
resonators [7–11], have many potential applications especially in
optofluidics [12] due to their integratable capability into the micro-
fluidic channel structure [13]. Similar to microdisks and microrings, a
strong light confinement in microtube resonators originates from the
total internal reflection along the outer curved surface, as shown in
Fig. 1. In contrast, the axial confinement of light in the microtube
resonators is typically weak and produces higher order modes for each
azimuthal mode [9,14–17]. For an axially symmetric confinement, the
light field will be localized in the middle [9,14]. However, for some

realized microtube resonators [15,18], the axial confinement is asym-
metric. Therefore, the localized light field is not in the middle.
Experimental findings of this asymmetric confined light field have
been reported [15]. Later, nontrivial optical phenomena (i.e., Berry
phase and spin-orbit coupling of light) have been observed in the
asymmetric microtube resonators [18]. However, analytic optical fields
for the asymmetric microtube resonators have not been investigated/
developed so far.

In this work, we theoretically investigate the axially asymmetric
property of microtube resonators. In experiments, the asymmetry can
be due to the change of microtube's wall thickness and/or its diameter
[9,14,15,13]. However, we maintain a perfect tubular structure with a
circular cross-section in our consideration here. Analytical field profiles
in terms of Airy, Bessel and Hankel functions can thus be obtained for
the confinements of light in axial direction and cross-section plane.
From this calculation, we can semi-analytically characterize the spatial
properties of both electric and magnetic fields in the axially asymmetric
microtube resonators. The calculated results agree well with those of
the simulations. These results will help with the understanding of the
light confinement in symmetric/asymmetric microtube resonators.

2. Formulation

Schematic illustration of axially asymmetric microtube resonators
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with relevant parameters is shown in Fig. 2. In Fig. 2(a), two refractive
indices n1 and n2 are introduced. Three geometrical parameters, i.e.,
the length L of a microtube, its inner and outer radii R1 and R2, are
defined in Fig. 2(a) and (b). According to the structural symmetry,
cylindrical coordinate (ρ,ϕ,z) is used throughout this work. For the
microtube resonators, the refractive index rn ( ) of the whole domain is a
function of radial and axial coordinates (ρ and z), i.e., rn ( )=n ρ z( , ),
which can be written as

⎧⎨⎩n ρ z n z R ρ R z L
n

( , ) = ( ), ≤ ≤ ⋂ 0 ≤ ≤
= 1, otherwise

,1 2

0 (1)

where n z n n n z L( ) = + ( − ) /1 2 1 and n0 is the refractive index of the
microtube's environment, which is assumed to be one (for vacuum or
air environment). Dispersion-free (frequency-independent) property is
considered for the microtube's wall material.

2.1. Helmholtz equation

We start our formulation with the well-known scalar Helmholtz
equation:

r r rF n k F∇ ( ) + ( ) ( ) = 0,2 2 2 (2)

where z∇ = ∇ = ∇ + ∂ /∂2
3D
2

2D
2 2 2 is the 3D Laplacian operator,

ρ∇ = ( ) +
ρ ρ ρ ρ ϕ2D

2 1 ∂
∂

∂
∂

1 ∂
∂2

2

2 is the two-dimensional (2D) Laplacian opera-

tor, rF ( ) is a scalar field function which is a component of electric field
E or magnetic field H , and k ω c πf c π λ= / = 2 / = 2 / is the wavenumber
where ω is the angular frequency, c is the speed of light in vacuum, f is
the temporal frequency, and λ is the free space wavelength. Note that

rn ( ) and rF ( ) are the input and output functions of this problem.

2.2. Separation of variables

Eq. (2) is a second-order partial differential equation, which can be
solved by several mathematical techniques. Here, we apply the method
of separation of variables [19], i.e.,

F ρ ϕ z Φ ρ ϕ Ψ z( , , ) = ( , ) ( ). (3)

Putting Eq. (3) into Eq. (2) and dividing it by Φ ρ ϕ Ψ z( , ) ( ) we have

Φ ρ ϕ
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Ψ z
Ψ z
z
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By using an effective refractive index theory for the axial confinement
[20], we can assume that

Ψ z
Ψ z n k n k1

( )
d ( )

dz
+ = ,

2

2
2 2

eff
2 2

(5)

where neff
2 is the refractive index due to the axial confinement. Then, we

have two differential equations, which can be separately solved. They
are

Ψ z
z

n k Ψ z n k Ψ z− d ( )
d

+ (1 − ) ( ) = (1 − ) ( ),
2

2
2 2

eff
2 2

(6)

and

Φ ρ ϕ n k Φ ρ ϕ∇ ( , ) + ( , ) = 0.2D
2

eff
2 2 (7)

Note that k Ψ z( )2 is added into both sides of Eq. (6) in order to make a
kind of Schrödinger-like equation and solve it with standard methods
in Quantum Mechanics [21]. There is another possible treatment for
Eq. (2) [7,9,14], which is done by decomposing k into kcirc and kz
(k k k= + z

2
circ
2 2) and then formulating another kind of Schrödinger-like

equation.

2.3. Axial field profile

For the axial confinement, Eq. (6) must be solved. This is an
eigenvalue problem similar to a finite square well problem in Quantum
Mechanics [22,21,23] ( m/22 is set to be 1.). If one uses an infinite
square well approximation for the symmetric case, i.e., n n n= ⪢ = 12 1 0 ,
the analytical solution is

⎧
⎨⎪
⎩⎪

Ψ z
lπz
L

z L( ) = sin( ), 0 ≤ ≤

0, otherwise
,

(8)

where l = 1, 2, 3, … is the axial mode index. Substituting Eq. (8) into
Eq. (6), one obtains

n n lπ
kL

= − ( ) .eff,l 1
2 2

(9)

This effective refractive index is used for solving Eq. (7) and finding the
wavenumber k (eigenvalue) at corresponding axial mode l. Note that if
kL lπ⪢ , the effective refractive index can be well approximated by n1 and

(a) (b)

(d)

(c)

Fig. 1. Schematics of (a) microdisk, (b) microring, (c) microsphere (with a coupled fiber)
and (d) microtube resonators. Ray representation of WGM fields is shown as solid red
lines in the structure. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 2. (a) Axially asymmetric refractive index profile along the axial direction (z-axis)
and (b) refractive index profile on a cross-section plane (xy-plane) of microtube
resonators. Relevant parameters are defined in the main text.
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this means that there is only a weak axial confinement in the microtube
resonators.

For asymmetric case, we assume n n n= 1⪡ <0 2 1. The confinement
potential in Eq. (6) is

n k n n n z
L

k(1 − ) = (1 − ( + ( − ) ) )2 2
1 2 1

2 2
(10)

n n n n z
L

k≈(1 − + 2 ( − ) ) .1
2

1 1 2
2

(11)

Linearization of Eqs. (10) and (11) is possible since we consider
only the small difference between n1 and n2 ( n n n n|Δ | = | − |⪡1 2 1). This
condition is probably valid for microtubes made by compound materi-
als such as Al Ga Asx x1− with graded variation of its content. Without this
linearization, the general nonlinear refractive index profile might be
considered. However, there is no such a general solution of the
nonlinear refractive index profile for this problem Eq. (6). For the
linear profile, if n n>1 2, the confinement potential is linearly increased
with z. When an infinite well approximation is used, the analytical
solution of Eq. (6) can be written in term of Airy Ai functions
[22,21,23]. That is

⎧
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(12)

where a n k n k n n k= (1 − ) − (1 − ) = ( − ) < 01
2 2

eff
2 2

eff
2

1
2 2 and b n n n k= 2 ( − )1 1 2 2. The

effective refractive index neff (in a) can numerically be obtained by
applying the boundary conditions Ψ z Ψ z L( = 0) = ( = ) = 0.

2.4. Cross-sectional field profile

For the perfect ring geometry shown in Fig. 2(b), WGM field profile
is expected as the solution of Eq. (7). For this solution, we can
decompose Φ ρ ϕ( , ) into f ρ e jmϕ( ) ± where j = −1 and m is the
azimuthal mode index. Eq. (7) can then be further decomposed. The
solution for the differential equation in radial direction is

⎧
⎨⎪
⎩⎪

f ρ
C J kρ ρ R
C J n kρ C Y n kρ R ρ R
C H kρ ρ R

( ) =
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( ), >
,

m

m m

m
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4
(1)

2 (13)

where J (.)m and Y (.)m are the Bessel function of the first and second
kinds, H (.)m

(1) is the Hankel function of the first kind [3], and C1, C2, C3

and C4 are constants obtained by matching the boundary conditions of
the considered fields at the inner and outer interfaces.

For calculating possible cross-sectional field profiles, one can
classify them as either transverse magnetic (TM) or transverse electric
(TE) modes [3]. The two modes have distinct characteristics due to the
different applicable boundary conditions. For TM modes, the consid-
ered field in Eq. (2) is Ez (F E= z) while it is Hz for TE modes. Once the
specific fields (E and H) at domain boundaries are matched, non-zero
C1, C2, C3 and C4 are obtained only at specific m and k. Obtained k
values are the eigenvalues of the problem.

3. Numerical results

Formulation presented in the former section can be visualized by
considering a specific microtube geometry. For instance, we consider a
10 − μm-long microtube made by semiconductor materials (i.e.,
AlGaAs) operating at near infrared wavelength range (nAlGaAs=3.3-3.4
at k=5 μm−1) [24]. Inner and outer radii of the microtube are set to be
0.8 μm and 1.0 μm, respectively.

Fig. 3(a) shows the results from the numerical calculation of the neff
when an asymmetric potential is introduced via n n nΔ = −1 2. By
increasing nΔ , neff for each axial mode l decreases. For each mode, a
linear relation between neff and nΔ can be assumed. For nΔ ≈ 0
(=10−5), the numerically calculated neff can be well fitted with the

analytically calculated one Eq. (9).
Fig. 3(b) shows the confinement potential and the axial field profiles

for the first three confined modes (l=1, 2, and 3). The nearly sinusoidal
field profile is obtained from Airy function when nΔ ≈ 0 in the left side
of Fig. 3(b). For the large nΔ , well-separated field profiles are obtained.
Characteristic feature of asymmetric Airy function is observed as well.
By adjusting the degree of asymmetry, one can vary the spatial
distribution of the field profiles. This controllability might be very
useful when specific objects (e.g., nanoparticles, quantum dots, or
molecules) are designed to couple with the optical field in the resonator
[1,2].

For the cross-sectional field profile, WGMs are obtained. Searching
for the solutions (eigenvalues) at k ≈ 5 μm−1 and n = 3.4eff , we found
TM modes with m=11, 12, and 13 at k=4.4503, 4.7629, and
5.0742 μm−1, respectively. Fig. 4(a) shows the TM mode (Ez) profile
with m=12. This field has continuity for both value and slope at the
inner and outer walls of the microtube. For TE modes, the WGM field
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Fig. 3. (a) Calculated neff for the first three confined modes (l=1, 2, and 3) as a function
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and nΔ = 0.1 (right). Dashed lines are calculated n k(1 − )eff,l
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Fig. 4. Cross-sectional field profiles for (a) TM mode (Ez) with m=12 and (b) TE mode
(Hz) with m=8. See text for calculation parameters.
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profiles with a lower mode index are obtained at k=4.6255, 4.8774, and
5.115 μm−1 form=7, 8, and 9, respectively. Fig. 4(b) shows the TE mode
(Hz) withm=8. This field has continuous value across the boundary but
the slope is discontinuous due to the applied boundary conditions [3].

To complete our numerical demonstration, we plot 3D field profiles
for the cases of symmetric and asymmetric potentials for the first three
axial modes in Fig. 5. Isosurfaces with the value of 0.25 and 0.5 of the
maximum values are presented. Figs. 5(a)–(c) show symmetric optical
fields, which are distributed in the whole microtube. In contrast, optical
fields in axially asymmetric microtube (Figs. 5(d)–(f)) are localized in
the high refractive index area [25].

4. Simulation comparison

Simulations using finite element method (FEM) [26–28] are
fulfilled in this section to confirm the validity of the formulation
developed above. For the simulations, we generate axially asymmetric
microtube structure (inner radius=0.8 μm, outer radius=1.0 μm, and
10 μm long) in a 3D simulation domain covered by the Perfectly
Matched Layer (PML). Then tetragonal meshes are generated based
on this structure. By numerically solve/search for eigenvalues near
initial wavenumber k = 5 μm−1 of the vectorial Helmholtz equation, we
can confidently obtain the solutions, which are eigenmode and 3D
mode field profile. Fig. 6 shows the simulated wavenumbers together
with those from analytical calculations based on the formulation. For
the simulation results, one cannot define TE or TM modes because they
are coupled and the coupling is involved in the simulations. Instead, we
label them as TE-like or TM-like modes.

Overall speaking, a good agreement between the FEM simulations
and analytical calculations is obtained. It is indicated that coupling
between TE and TM modes is generally weak so that it can be ignored
in the formulation. However, it is stronger for TE modes with a smaller
azimuthal mode index, which results in a relatively bigger deviation
from simulations (see the left of Fig. 6). The stronger coupling is due to
their larger evanescent field in the environment [29], where external
coupling between the dynamics of the axial and the cross-sectional
propagations of light is stronger [14]. External coupling has been used
to obtain high-quality optical modes [30,31], and we might investigate
it in our future works. Nevertheless, these results show that the
formulation presented in this work would be useful to obtain resonant
modes for axially asymmetric microtube resonators with a certain
precision.

By comparing the semi-analytical approach presented in this work
and the FEM, we found that the semi-analytical method allows us to
theoretically estimate the maximum field density as well as the spread
of the field (by the analysis of Ψ z( ) shown in the Eq. (12). Moreover,
one can use the Eq. (12) to obtain the effective refractive index from the
axial confinement by applying the boundary conditions. By applying
this model (for perfect circular tubes), one does need only numerical
root findings. However, for such a rolled-up tube resonator [7–11],
where circular symmetry is broken, 2D FEM can be applied along with
the model proposed in this work to calculate 3D mode profile and
eigenmode instead of a full 3D FEM simulation.

5. Conclusion

We develop semi-analytical formula for the field profiles of optical
modes in axially asymmetric microtube resonators. By applying
separation of variables to Helmholtz equation and adopting effective
refractive index theory, the function for an analytic field profile in the
axial direction can be written as an Airy function. For the cross-
sectional field profile, typical whispering-gallery modes are obtained.
The good agreement between the simulations and the analytical
calculations confirms the validity of the semi-analytical formula. This
work will enhance an engineering of confined optical field, which is
crucial for developing novel optical micro-/nano-devices.
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