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ABSTRACT: Advanced technologies employed in modern respiratory airflow transducers
have exhibited powerful capabilities in accurately measuring respiratory flow under controlled
and sedentary conditions, particularly in clinical settings. However, the wearable applicability
of these transducers as face-mounted electronics for use in occupational and sporting activities
remains unexplored. The present review addresses the critical wearability issue associated with
current respiratory airflow transducers, including pneumotachographs, orifice flowmeters,
turbine flowmeters, hot wire anemometers, ultrasound flowmeters, and piezoelectric airflow
transducers. Furthermore, a comprehensive analysis and comparison of all factors that impact
the wearable applicability of respiratory airflow transducers are conducted, considering
dynamic accuracy, long-term usability, power consumption, calibration frequency, and cleaning
requirements. The findings indicate that the piezoelectric airflow transducer stands out as a
more viable option for wearables compared to other devices. We expect that this review will
serve as a valuable engineering reference, guiding future research efforts in designing and
developing wearable respiratory airflow transducers for ambulatory respiratory flow monitoring.
KEYWORDS: respiratory airflow, wearable applicability, pneumotachographs, fixed orifice flowmeters, variable orifice flowmeters,
turbine flowmeters, hot wire anemometers, ultrasound flowmeters, piezoelectric airflow transducers

The respiratory signal is one of the most informative vital
signs, providing various clinical and physiological

indicators.1 For instance, a respiratory pattern is an essential
biomarker for various pulmonary diseases such as acute
respiratory syndrome (ARDS), chronic obstructive pulmonary
disease (COPD), and pulmonary edema.2 Respiratory fre-
quency is also crucial in sports science during high-intensity
training.3,4 The forced expiratory volume (FEV) and forced vital
capacity (FVC) are two essential measurements in the diagnosis
of obstructive and restrictive lung diseases.5 Pulmonary
ventilation is a significant metabolic rate parameter closely
related to human physiological strain.6,7 Therefore, accurate and
continuous respiratory flow monitoring is indispensable in
clinical settings and occupational/sports environments.1,8

Several types of respiratory airflow transducers, such as
pneumotachographs (PTs), orifice flowmeters (OFs), turbine
flowmeters (TFs), hot wire anemometers (HWAs), ultrasound
flowmeters (UFs), and piezoelectric airflow transducers (PATs)
have been employed to measure respiratory flow, as shown in
Figure 1. These measurement techniques have been validated
under stationary and controlled conditions, particularly in
clinical environments.9−11 To be suitable for use in occupational
and sporting activities, respiratory airflow transducers must be
securely attached to the human face using respiratory protective
equipment, ensuring their wearability. However, due to their

inherent characteristics, such as operating principles, compo-
nents, and design structures, these transducers exhibit varying
levels of wearable performance. It is, therefore, necessary and
meaningful to analyze their wearable applicability to provide
helpful information for developers and engineers.
Hence, we provided a detailed description of the working

principles, component materials, and design structures of
current respiratory airflow transducers. Based on this
information, we evaluated their advantages and limitations in
their wearable applicability in terms of dynamic accuracy, long-
term usability, power consumption, calibration frequency, and
cleaning. Our analysis indicates that the piezoelectric airflow
transducer emerges as a particularly promising option for
wearables, surpassing other existing flowmeters. This article
aims to serve as a valuable resource for engineers and researchers
seeking to design and develop the next generation of wearable
airflow transducers.
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■ TECHNICAL REQUIREMENTS FOR WEARABLE
RESPIRATORY AIRFLOW TRANSDUCERS

Numerous parameters, including accuracy, sensitivity, response
time, measurement range, and breathing resistance, impact the
performance of respiratory airflow transducers. Nonetheless, the
majority of these parameters have been primarily validated for
traditional respiratory flow measurement under stationary and
controlled conditions.9−11 Therefore, we try to explore the
additional technical requirements for wearable respiratory
airflow transducers in this section.
To evaluate the wearable applicability comprehensively, the

following particular technical parameters for the respiratory
airflow transducers are proposed:
(1) Dynamic accuracy, which is defined as the accuracy

achieved under ambulatory and open environments, is a
key evaluation index for wearable airflow transducers. The
dynamic accuracy could be influenced by external factors
such as gravity, motion artifact, noise, etc.

(2) Long-term usability. After long-term use, the fully
saturated exhaled air quickly condenses inside the airflow
transducers. The condensate can block the air pathway in
some airflow transducers, reducing their long-term
usability. One of the significant challenges in wearable

respiratory monitoring is avoiding issues caused by water
vapor condensation. Additionally, long-term usability is
influenced by both the durability and degradation of
components over time.

(3) Power consumption. To enhance mobility, wearables
must be battery-powered devices. Power consumption
becomes a critical aspect for battery-operated wearable
respiratory airflow transducers, especially those that rely
on a heating system. This review discusses and compares
several factors that impact the power consumption of
existing airflow transducers.

(4) Calibration frequency. Airflow transducers with periodic
calibration or calibration-free offer great benefits in
wearable applications because the calibration procedures
for some airflow transducers are pretty tricky and typically
require special devices.

(5) Cleaning. Airflow transducers are highly susceptible to
contamination after use, necessitating regular cleaning
and disinfecting. However, the complex structures of
some airflow transducers can pose a challenge during the
cleaning process.

The technical parameters such as dynamic accuracy, long-
term usability, power consumption, calibration frequency, and

Figure 1. Current respiratory airflow transducers for respiratory flow measurement and their wearable applicability.
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cleaning difficulty could be of minor importance for traditional
applications. In contrast, they could become primary factors
when designing and developing wearables. Therefore, we focus
on these five selection criteria to evaluate the wearable
applicability of current airflow transducers.

■ WEARABLE APPLICABILITY EVALUATION
In this section, we present an overview of the operating
principles, components, and design structures of airflow
transducers commonly used in respiratory flow measurement.
From this foundation, we deduce their technical strengths and
weaknesses in areas such as dynamic accuracy, long-term
usability, power consumption, calibration frequency, and
cleaning, with the aim of assessing their suitability for use in
wearable technology.

Pneumotachographs. A pneumotachograph (PT) gen-
erally consists of a conduit, a flow resistor, and a differential
pressure sensor, as illustrated in Figure 2. There are two types of
PTs, a Fleisch PT (Figure 2a) comprising a bundle of capillaries
as a flow resistor and a Lilly PT (Figure 2b) with a flow resistor of
a fine wire mesh.12,13 The roles of flow resistors, i.e., capillary
tubes and fine wire mesh, are to create measurable differential
pressure between the upstream and downstream sides of the
resistors and rectify the turbulent flow of the airstream into the
laminar flow.14 The differential pressure sensor then detects the
resulting pressure through a bypass channel connecting the
conduit with the differential pressure sensor (Figure 2a). Most
differential pressure flowmeters adopt such a bypass config-
uration design. If the air fluid runs entirely in the conduit, the
pressure drop across the flow resistor is proportional to the input
flow rate under the laminar regime based on the Hagen−

Poiseuille law. The linear relationship between the pressure drop
and the flow rate for the Fleisch PT is expressed as below:14

= × ×
× ×

P
L

n r
Q

8
4 (1)

where ΔP is the pressure drop, Q is the flow rate, L is the
capillary tube length, r is the capillary tube internal radius, n is
the number of capillary tubes, and μ is the dynamic viscosity of
the fluid. According to eq 1, the Fleisch PT’s sensitivity depends
on the flow resistor’s geometry, especially the radius of capillary
tubes. It is noteworthy that because the breathing resistance of
Fleisch PT elevates with increasing sensitivity, the design of the
flow resistor should be optimized for various purposes.15 Fleisch
PT’s accuracy is influenced by the physical characteristics of the
breathing air (i.e., dynamic viscosity, μ).16−18 For instance, the
viscosity of water vapor is approximately half that of air, and only
5% of water vapor is in the fully saturated exhaled air at 37 °C,
but this causes a measurable impact on the viscosity of air,
causing inaccurate measurement.19 Similarly, changes in the
content of the oxygen and carbon dioxide between inhaled and
exhaled gases could affect the accuracy of Fleisch PT.20 Because
the core body heat warms the lung’s air, the expired air usually is
warmer than the inhaled air, resulting in air expansion to alter air
viscosity as well.21

PTs are the established technology and are regarded as the
gold standardmethod tomeasure respiratory flow and volume in
various clinical settings due to the advantages of high accuracy
and linear response under sedentary conditions. One decisive
drawback for PTs is their dynamic accuracy because the signal of
PTs is sensitive to gravity.22 Moreover, the PTs should be
operated at a condition that their measurement and calibration

Figure 2. Schematics of (a) Fleisch and (b) Lilly pneumotachographs.

Figure 3. Schematics of (a) a fixed orifice flowmeter and (b) a variable orifice flowmeter.
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are in the same direction. Therefore, the PTs are typically used at
static status, not for ambulatory conditions. As there is no
moving part, the durability of PTs is not doubtful. However,
water vapor can readily condense inside the flow resistor to clog
the capillaries or the fine mesh, limiting its long-term usability.23

The condensation effect was observed after five consecutive
blows at an ambient temperature of 20 °C, and the error reached
7% in respiratory volume measurement.17 The PT head is
generally electrically heated to avoid such condensation, but it
could significantly consume electric power. The elevated power
consumption of PTs is unsuitable for use in battery-based
wearable devices. PTs require frequent calibration.24 They are
difficult to be cleaned due to the thin capillaries or the fine
mesh.25

Orifice Flowmeters. An OF is generally composed of a
conduit, an orifice plate, and a differential pressure sensor. There
are two configurations of OFs, which differ from each other in
the orifice plate characteristics. The fixed OF (F-OF) comprises
a fixed orifice plate made of rigid flaps. The variable OF (V-OF)
is constituted by a variable orifice plate made of a couple of
flexible flaps, as illustrated in Figure 3. The working principle of
OFs is similar to that of PTs because both OFs and PTs are
classified into the same category of differential pressure
flowmeter. For OFs, the orifice plates act as flow resistors to
produce measurable pressure drops between two sides of the
orifice plate. Given that the gas passing through the conduit is
one-dimensional flow and under conditions of incompressible,
nonviscous, and isothermal fluid, a relationship between the
pressure drop and the input volumetric flow rate can be
determined by the geometry of F-OF based on the following
Bernoulli’s equation:26

= × ×Q
A

A A
P

1 ( / )

22

2 1
2

(2)

where ΔP is the pressure drop, Q is the flow rate, A1 is the inlet
area of the F-OF, A2 is the passage area of the orifice place, and ρ
is the fluid density. According to eq 2, the flow rate is
proportional to the pressure drop’s square root. The non-
linearity response is the drawback of these flowmeters because
the lower the flow rate, the lower the signal.26 Conversely, the V-
OF has a linear relationship between the volumetric flow rate
and the pressure drop. The V-OF comprises the orifice plate
made of a pair of flexible flaps so that the airflow rate varies the
passage area of the orifice plate, e.g., the higher airflow, the wider
passage area, and vice versa. As a result, the V-OF automatically
achieves a mechanical linearization between the pressure drop
and the flow rate by altering its flow resistance.9,25 The precision
of OFs is also affected by the air constituent and temperature
because eq 2 is a function of the air density.26

F-OFs have a nonlinear (power fuction) relationship between
input flow rate and pressure drop, showing limited accuracy
under both dynamic and static conditions. Although V-OFs have
linear responses, there is no reference regarding their dynamic
accuracy. However, it can be supposed that the flexibility of the
flaps plays a critical role in dynamic accuracy because flaps that
are too flexible could be susceptible to vibration, whereas those
that are too stiff increase breathing resistance. One significant
advantage of OFs is that they are unaffected by water vapor
condensation, unlike other airflow transducers.27 As shown in
Figure 4, although a large amount of water was observed in a V-
OF after 4 h of the trial, its sensitivity did not change.
Nevertheless, there is still a high possibility that the condensed

water vapor will accumulate inside the bypass channel and
eventually block the channel after long-term use, leading to
incorrect measurement. Moreover, to reduce signal noise, the
bypass channel diameter should be small enough,28 accelerating
the blocking. In this context, the bypass configuration design for
OFs and PTs could reduce their long-term usability. OFs
demand frequent calibration,29 and they are easier to be cleaned
because of their simple and robust structure compared to PTs.

Hot Wire Anemometers. An HWA consists of two probes
with a heated wire stretched between them, as shown in Figure 5.

It is designed following King’s law, based on which heat (Joule
effect) dissipated from a heated wire by an airstream is
proportional to the square root of the airstream’s velocity as in
the equation below.30

= +I R v( )(T T )w w a
2

(3)

where I is the current supplied by the circuit, α and β are two
empirical constants related to the geometric properties of wire
and the air features, respectively, v is the airstream velocity, Tw is
the wire temperature, Rw is the wire resistance at Tw and Ta is the
airstream temperature. Since the wire resistance depends on the
wire temperature, eq 3 is related to three variables: the airstream
velocity, the current, and the wire temperature (or the wire
resistance). If the current or the wire temperature is maintained
constant, the airstream velocity will only be related to a single
variable.31 Therefore, there are two types of HWAs: a constant
temperature HWA (CT-HWA) and a constant current HWA
(CC-HWA). The CT-HWA is based on holding the wire
temperature at a constant value so that the current depends on
the airstream speed. In the CC-HWA, the current of hot wire
maintains at a value; thereby, the temperature changes with the
airstream speed. Compared with the CC-HWA, the CT-HWA
has more merits in terms of its usability and durability. For
instance, the CT-HWA operates at a constant temperature,
preventing itself from burning abruptly when the airstream
speed decreases. The CT-HWA has a linear relationship

Figure 4. Pictures of a V-OF (SpiroQuant P by EnviteC, Honeywell)
showing (a) before and (b) after water vapor condensation.
Reproduced with permission of ref 27. Copyright 2015 WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim.

Figure 5. Schematic of a typical hot wire anemometer.
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between the output voltage and the air velocity by modifying the
electrical circuit.31 Several factors influence the accuracy of
HWAs. To be specific, eq 3 is a function of the airstream
temperature, implying the accuracy is affected by breathing air
temperature.32,33 Moreover, the constant, α, in eq 3 is related to
free convection that relies on the direction of the heated wire
(horizontal or vertical); thereby, the calibration and measure-
ment should be carried out in the same orientation.31 The
presence of water vapor in the air increases the thermal
conductivity, influencing the heat exchange in the airstream and
the heated wire, causing measurement errors. A change in the
relative humidity from 25 to 70% at 25 °C leads to an additional
2% heat loss per degree rise of the wire temperature.34

HWAs take the merits of high sensitivity at low airflow and
short response time.11,35,36 As mentioned above, the calibration
and operation of HWAs should be performed in the same
direction,31 but it is not always ensured during activity, limiting
the dynamic accuracy. Water vapor condensation is another
inherent issue for applying HWAs in wearable respiratory
monitoring. As long as the condensed water vapor in exhaled air
contacts the heated wire, which rapidly increases heat transfer, it
will lead to inaccurate airflow measurement.34,37 Another
shortcoming of HWAs is their durability due to the fragile
heated wire1,37 that is usually made of tungsten or platinum and
could be easily destroyed. In this context, a hot film-based
anemometer may be more appropriate for respiratory
monitoring, which is more rugged38 and has lower signal
noise39 than those of HWAs. HWAs probably require much
more power to heat the wire than another airflow transducer,
limiting them in applications of battery-based wearable devices.
Another concern for applying HWAs in respiratory monitoring
is related to the discrimination of the respiratory airflow
direction because an HWA with a single hot wire is unable to
determine the airflow direction. This issue can be solved by
employing more complex configurations using at least two hot
wires,9,40 as illustrated in Figure 6, but it further elevates the

power consumption. HWAs require frequent calibration and are
fairly difficult to calibrate.37 Cleaning difficulty is another
drawback for HWAs because of the fragile wire.37

Turbine Flowmeters. A TF comprises a conduit, a
multibladed turbine wheel, and a pickoff sensor, as illustrated
in Figure 7. The TF is designed so that air passes through a
conduit, in which a turbine wheel with multiblades is
perpendicularly mounted to the airflow direction to rotate the
turbine. The rotational speed of the turbine wheel is then
recorded by the pickoff sensor, converting each passage into an
electrical impulse. The fundamental concept of TFs is based on
the linear relationship between rotational speed and airflow rate
through the conduit as the following expression:41

= ×Q k R (4)

where Q is the airflow rate, R is the rotational speed of the
turbine wheel, and k is the constant, which is related to the
geometry of TF, but is independent of gas properties such as
kinematic viscosity. This linear response is only valid when the
Reynolds number is bigger than 800−1000.1 Therefore, TFs are
typically used at high flow rates and low viscosity fluid. Still, they
could also be employed to measure low flow rate like respiration
by adequately modifying the components of TFs.42,43 It is
noteworthy that TFs do not require any temperature
compensation and are not influenced by either humidity or
altitude variation.44,45 In addition, it seems difficult to correctly
measure inspired and expired gases together because of the
rotational inertia of the turbine, called “turbine hysteresis”.44,46

TFs have been used to monitor respiratory signals in various
sports and exercise settings as a proven technology,1 because
these types of flowmeters are not influenced by air components
and temperature, and they are inherently immune from motion
artifact.43 Two wearable metabolic trackers, such as COSMED
K5 and Metamax 3B have utilized TFs as flowmeters in their
equipment to measure respiratory flow under dynamic and open
environments.6 However, TFs present inferior accuracy than
HWAs, PTs and UFs in low airflow measurement,11 and the
dynamic accuracy of the TFs significantly reduces at an airflow
rate lower than 4 L/m.45 Due to the degradation of moving parts
like thrust bearings,47 TFs have limited long-term usability. TFs
require frequent calibration and need a special calibration
syringe.14 Cleaning difficulty is another issue for TFs owing to
the complex structure of the turbine.

Ultrasonic Flowmeters. There are several operating
principles for UFs, such as time-of-flight, phase shift, sing
around, and so forth.46 The only time-of-flight-based UF (TOF-
UF) is reviewed in this work because it is the most frequently
applied in commercial equipment for respiratory signal
measurement. A TOF-UF consists of a conduit and a pair of
piezoelectric transducers (PT), and two piezoelectric trans-
ducers are placed face-to-face at the extremities of the cross-
sectional conduit, whose axis lies at an angle of 45° to the airflow
axis, as shown in Figure 8. As a result, they can exchange
ultrasonic signals alternately by rapidly altering their roles as
transmitters and receivers. Since the distance (L) between two
piezoelectric transducers is constant, the transit time going
upstream (tu) is decreased with the airflow while the transit time
going downstream (td) is increased. The difference in two transit
times can be used to determine the air velocity (v) and hence of
flow;48 therefore, this operating principle is called “time of
flight”.
The volumetric flow rate can be estimated by eq 548

= × ×Q
r

c t
4

2

(5)

whereQ is the volumetric flow rate, r is the radius of the tube, c is
the velocity of the ultrasonic signal, i.e., the acoustic velocity in

Figure 6. Schematic of an HWA comprising two heated wires to
discriminate flow direction. Reproduced with permission of ref 9.
Copyright 2015 Elsevier B.V. All rights reserved.

Figure 7. Schematic of a typical turbine flowmeter.
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air medium, Δt is the difference time between transit times. As
seen from eq 5, the linear relationship between the volumetric
flow rate and the differential transit time is greatly influenced by
the acoustic velocity. As a result, the accuracy of TOF-UF could
be affected by the composition, temperature, and moisture
content of breathing air because these parameters alter the
velocity of sound propagation.48 For instance, it leads to a
maximum measurement error of 3% in pure oxygen medium
after calibration is carried out with air.49 A TOF-UF calibrated
with dry air at 30 °C causes a 5.3% error if the measurement is
performed in a humid and hot environment with 44 mmHg
water vapor pressure at 40 °C.48
TOF-UFs provide some unique advantages over other airflow

transducers, such as inherent bidirectional measurement and
negligible pneumatic resistance.50 Due to good linearity and
stability, it is free from calibration as well.46 Generally, TOF-UFs
for airflow measurement operate at a specific frequency ranging
from 40 to 200 kHz. This is because, at frequencies higher than
200 kHz, the signal absorbed by gas exhibits significantly large,
whereas sound lower than 40 kHz becomes audible.46

Therefore, even the stray internal sound of TOF-UFs caused
by breathing could interfere with the signal baseline. As the
respiratory volume is the time integration of the signal, even a
slight drift in the signal baseline could lead to a significant error
in respiratory volume measurement.50 Such influence could
worsen in an uncontrolled and noisy environment, limiting the
dynamic accuracy of TOF-UFs. The cost of TOF-UF is another
concern. It is much more expensive than other airflow
transducers due to the sophisticated circuit, which requires
submicron to nanosecond time resolution to discriminate the
differential transit times.51 TOF-UFs are easily cleaned because
there is no obstacle in the air pathway.

Piezoelectric Airflow Transducers. A piezoelectric airflow
transducer (PAT) consists of a conduit and a piezoelectric bend
sensor, as illustrated in Figure 9. The bend sensor is particularly
noteworthy as it is crafted from uniaxially drawn piezoelectric
poly L-lactic acid (PLLA) film, which effectively eliminates
sensor signal fluctuation caused by the temperature variations
between inhaled and exhaled air, thanks to the piezoelectric
PLLA film’s lack of pyroelectricity. Furthermore, the bend
sensor incorporates a unique double-layered structure design,
wherein the outer electrode is grounded, providing a self-
shielding capability that effectively mitigates motion artifacts,
thereby enhancing the sensor’s wearable performance. The
airflow detecting mechanism of the PAT is as follows: An airflow

passes through a conduit, in which a piezoelectric PLLA bend
sensor is perpendicularly installed with respect to the airflow
direction, produces a differential pressure on both sides of the
bend sensor. The bend sensor is deflected because of the
differential pressure, generating piezoelectricity proportional to
the airflow rate square. Therefore, the relationship between the
airflow rate and generated piezoelectricity for the PAT is
expressed as below:52

= ×Q k P (6)

where Q is the airflow rate, P is the produced piezoelectricity,
and k is the constant, which is related to the geometry and
property of the piezoelectric bend sensor. According to eq 6, the
flow rate is proportional to the piezoelectric signal’s square root,
showing a nonlinear respons. Nevertheless, it has been proven
that the dynamic accuracy of the PAT presented by Lu Jin et al. is
comparable to a commercial flowmeter, i.e., Lily PT.52 Unlike
the above-mentioned differential pressure flowmeters, PAT has
no bypass channel, so there is no channel-blocking issue,
improving its long-term usability. Regarding calibration, it has
been reported that the PAT’s calibration equations have not
changed remarkably during ten months, indicating frequent
calibration is unnecessary.52 Due to the simple structure of PAT,
it is not difficult to be cleaned and sterilized. However, it should
avoid high temperatures as the piezoelectricity of the bend
sensor of the PAT could be changed above a critical
temperature, i.e., curie temperature.53

■ CHALLENGES AND DIRECTIONS OF WEARABLE
RESPIRATORY AIRFLOW TRANSDUCERS

The wearable applicability of the current airflow transducer in
dynamic accuracy, long-term usability, power consumption,
calibration, and cleaning has been evaluated. Table 1 provides a
comprehensive overview of the various factors that impact the
wearable applicability of current respiratory airflow transducers,
clearly indicating that none of the existing transducers can
perfectly satisfy the five technical requirements of wearable
applicability together. OFs and TFs show acceptable dynamic
performance but still present some limitations in the long term
usability and calibration frequency over other airflow trans-
ducers. OFs are much more beneficial than TFs in terms of
cleaning and durability because of their simple structure. The
main problem of OFs is their long-term usability due to the
bypass configuration design. In this context, PAT without a
bypass channel could be the more optimal device for wearable
applications than other flowmeters, as compared in Figure 10.
Although cost is not explicitly mentioned due to its inherent
difficulty in quantification, it remains a decisive factor in
determining the commercial viability of wearable products. The
PAT could potentially offer a competitive price point, primarily

Figure 8. Schematic of a “time of flight” based ultrasonic flowmeter.

Figure 9. Schematic of a piezoelectric airflow transducer, (a) side view
and (b) front view.
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because its sensing component consists solely of low-cost
piezoelectric PLLA film.
Developing a novel airflow transducer with high dynamic

accuracy, long-term usability, low-power consumption, calibra-
tion-free, and easy cleaning is essential and significant for
ambulatory respiratory flow monitoring, but it is challenging.
Another approach is to overcome the drawbacks of current
airflow transducers by innovating design and integrating new
technology. For instance, allowing the airflow transducers to
measure only inhaled air by separating the breathing pathway
can effectively avoid the influence of moisture condensation.
Frequent calibration can automatically be achieved through
upgrading the electric circuit and device program. Introducing
the low-power design of the airflow transducer and a high-
density Lithium-ion battery, the burden from the power
consumption would reduce to a certain level. The longevity of
some airflow transducers would be enhanced by adopting more
durable and rigid hot wires for HWAs.
Wearable airflow transducers are expected to undergo

significant advancements in the future, with anticipations of
increased wearability, providing better monitoring and manage-
ment of respiratory health. Improvements in design will also lead
to enhanced comfort and usability, with smaller and more
lightweight devices that can be worn for extended periods.

Integration with other wearable devices, such as smartwatches,
smartglasses and fitness trackers, will offer a more comprehen-
sive view of overall health and wellness. Furthermore, wearable
airflow transducers will play a larger role in medical research and
occupational health settings, expanding their use and impact.We
expect future studies and advancements that will build upon this
engineering reference to further improve the wearable
applicability of respiratory airflow transducers.
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Figure 10. Estimation and comparison of wearable applicability of current respiratory airflow transducers in dynamic accuracy, long-term usability,
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