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Modulation of high quality factors in rolled-up microcavities
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We systematically investigate the evolution of resonant modes in a rolled-up microcavity as the overlap length
between structural notches increases, which presents a modulation behavior for high Q factors. The resonant
modes in the rolled-up microcavity display a deterministic mode chirality, which is well correlated to the Q

factor. We derive a two-mode non-Hermitian Hamiltonian to clarify these unusual findings. It reveals that strong
resonant interactions of scattered waves between the structural notches are responsible for the high mode chirality
(thus high Q factor) and its modulation behavior in rolled-up microcavities.
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I. INTRODUCTION

Because of the ultrahigh quality (Q) factor of whisper-
ing gallery modes (WGMs), dielectric microcavities with a
circular cross section are continuously receiving a great deal
of attention over a wide range of applications from cavity
quantum electrodynamics to label-free optical biodetection
[1–8]. Several geometrical alternatives [9–15], including mi-
crospheres, microdisks, microtoroids, microrings, microbot-
tles, microtubes, and microbubbles, have been demonstrated
over the last two decades, benefiting from emerging micro- and
nanotechniques. By combining top-down (through the design
of planar nanomembranes) and bottom-up (through the self-
assembly of rolled-up architectures) approaches, rolled-up
WGM microcavities have been demonstrated [16–22] and have
received much attention owing to the customizability of their
geometry and material, as well as their laboratory-on-a-chip
compatibility [23]. Recently, nontrivial optical phenomena
(i.e., Berry phase and spin-orbit coupling of light) have
been observed in WGM microcavities based on the rolled-
up geometry [24]. Unfortunately, the Q factor of rolled-up
microcavities is undesirably low compared with that of other
WGM microcavities. Several loss mechanisms of the Q

factor in rolled-up microcavities have been proposed [20],
including the material absorption, surface roughness, and the
local structural defects (e.g., notches formed by the edges of
the rolled-up nanomembrane layer and voids between these
layers). Obviously, the usage of these redundant external
factors is not helpful to capture the essential physics behind
the spoiling of Q factors in rolled-up WGM microcavities.

The ultrahigh Q factor of WGMs is protected by the
rotational symmetry of circular microcavities. For a mi-
crocavity that has a slight deformation from a circle, the
degree of Q spoiling is not severe because of an intrinsic
barrier formed by the Kolmogorov-Arnold-Moser (KAM)
invariant tori [25]. Rolled-up microcavities are considered as
such slightly deformed microcavities. Recently, a nontrivial
mechanism of Q spoiling in a slightly deformed microcavity
was proposed which points out that Q factors are spoiled
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when an (l,m) = (1,m) WGM interacts with its pair (2,m − 4)
quasinormal mode through an avoided resonance crossing due
to the Fermi resonance [26,27]. Here, l and m are the radial and
azimuthal mode indices, respectively. However, the Q-spoiling
mechanism due to the Fermi resonance is not applicable for
rolled-up microcavities since there is no available (2,m − 4)
mode due to their subwavelength-thin wall thickness. There-
fore, an in-depth study on the underlying physical mechanism
of Q spoiling in rolled-up WGM microcavities is highly
required for further development.

Here, we clarify the mechanism of Q spoiling in rolled-up
microcavities by systematically investigating the evolution
of resonant modes as the overlap length between structural
notches increases. The Q factor of resonant modes in a
rolled-up microcavity is fully regulated by the deterministic
mode chirality. In addition, a modulation behavior of locally
high Q factors (thus high mode chiralities) is observed. To
explain these unusual findings, a two-mode non-Hermitian
Hamiltonian is presented. It reveals that strong resonant
interactions of scattered waves between the structural notches
through the subwavelength-thin wall result in the high mode
chirality (thus high Q factor) and its modulation behavior.
These results will help with the understanding and opti-
mization of high-Q rolled-up microcavities as well as other
deformed microcavities.

The remainder of this paper is organized as follows.
Section II defines the system under study, i.e., rolled-up mi-
crocavities. Then, numerical results for their optical resonant
modes are presented in Sec. III. In Sec. IV, a non-Hermitian
Hamiltonian based on a two-mode approximation is introduced
to describe the resonant modes of the rolled-up microcavities.
We summarize our results in Sec. V.

II. THE SYSTEM

Figure 1 shows a schematic drawing of a strain-driven
self-rolling structure. The resulting rolled-up structure is com-
pletely determined by the planar strained dielectric nanomem-
brane [19,28]. Light confined inside the dielectric wall due to
the total internal reflection between the inner and outer surfaces
can travel around the circumference leading to WGMs [16].
Dielectric microcavities produced in this way have an excellent
customizability of their structural parameter. In this work,
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FIG. 1. Schematic of a rolled-up microcavity. A U-shaped
strained nanomembrane is defined at the beginning. Then, the
self-rolling mechanism starts from the starting edge, and a tubular
structure is formed over the full width of the strained nanomembrane.
After the rolling distance Lz, only the side pieces of the structure
continue to roll. As a result, the middle piece of the structure is
separated from the substrate (not shown here) so that scattering loss
of resonant modes caused by the substrate is avoided. In the end, a
rolled-up microcavity is formed in the middle piece of the self-rolling
tubular structure with a well-defined overlap length L, as shown in
the inset.

we can thus define the overlap length L as a well-controlled
deformation parameter for rolled-up microcavities in order to
investigate the evolution of the Q factor of the WGMs.

The axial length Laxial (aligned along the z axis) is defined to
a very large value (compared to the wavelength considered) so
that the rolled-up structure can be treated as an infinitely long
cylinder. Maxwell’s equations are then reduced to the two-
dimensional scalar Helmholtz equation, in polar coordinates
(ρ,φ),

∇2ψ + n2(ρ,φ)
ω2

c2
ψ = 0, (1)

where ψ is the wave function, n(ρ,φ) is the piecewise constant
refractive index, ω is the complex frequency, and c is the speed
of light in vacuum. Because of the subwavelength-thin wall
thickness commonly used in rolled-up microcavities, resonant
modes with the transverse magnetic (TM) polarization prefer-
ably exist and are considered here. For TM modes, the electric
field vector E(ρ,φ,t) ∝ (0,0,Re[ψ(ρ,φ)e−iωt ]) is along the
z direction. The lack of rotational symmetry in rolled-up
microcavities makes the optical system nonintegrable, so the
finite-element method is adopted to solve the Helmholtz equa-
tion (1) with Sommerfeld outgoing wave conditions at infinity
[29]. In the end, Q factors are obtained as |Re(ω)/[2Im(ω)]|.

In a given z plane, the boundary of a rolled-up structure is
defined as

ρ(φ) = R

(
1 − t

2π
φ

)
, (2)

where R is the outermost radius at φ = 0 and t is the thickness
of a single layer. The outer boundary jumps back to R at
φ = 2π , creating the outer notch, while the inner notch is
generated at φ = β ≈ L/Ravg. Here, the overlap length L is
determined by the rolling distance Lz (L ≈ Lz − 2πRavg), and
Ravg is the average radius of the rolled-up structure. This spiral-
like structure has a deterministic structural chirality, which is
counterclockwise (CCW) because the strained nanomembrane
is defined to roll upward. The opposite structural chirality
(i.e., clockwise, CW) can be obtained by inversing the
strain gradient of the strained nanomembrane so that it rolls
downward [17]. As will be seen later, this structural chirality
determines the spatial chirality of resonant modes in rolled-up
microcavities.

A rolled-up microcavity rolled from a 100-nm-thick
nanomembrane (t = 100 nm), with the refractive index n = 2
and the outermost radius R = 5 μm, is considered throughout
this paper; these are typical parameters for rolled-up micro-
cavities.

III. NUMERICAL RESULTS

Resonant modes in the rolled-up microcavity are presented
in Figs. 2(a) and 2(b), which show their wavelength shift and
Q-factor variation, respectively. There is a nearly degenerate
pair of modes for a given azimuthal mode index m. It is called
mode splitting and has recently been proved experimentally
[30]. Several numerical studies on the mode splitting have
been reported as well [30–32]. It is concluded that the split-
mode pairs result from the local structural singularities (i.e., the
inner and outer notches), which limit Q factors of rolled-up
microcavities. However, none of these works addressed the
relationship between Q factors and the structural chirality. The
aim of this work is to present a numerical and theoretical study
which reveals that Q factors of the split modes are essentially
determined by the interplay between the structural and mode
chiralities in rolled-up microcavities.

The nearly degenerate mode pairs are well known in
the high-Q WGM microcavities (e.g., microspheres [33,34],
microdisks [35,36], and microtoroids [6,37]). However, they
are generally undesirable due to uncontrollable structure
defects which introduce external decay channels, leading to
the degradation of the high Q factors [34]. On the other hand,
manageable degenerate mode pairs are of particular interest
in the context of modern sensing applications [6,38,39].
Recently, Wiersig systematically investigated the structure
of nearly degenerate mode pairs in a well-defined two-
particle-microdisk system and pointed out that the pair of
modes is nonorthogonal and chiral due to an asymmetric
transition between the CW and CCW components [40]. A
complex-square-root topology with a branch-point singularity
at the exceptional point (EP) in parameter space is responsible
for the mode chirality and nonorthogonality. Later, he found
that the sensitivity of single-particle detection based on the
frequency splitting could be enhanced more than threefold
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FIG. 2. Evolution of (a) resonant wavelength, (b) Q factor,
(c) mode chirality, and (d) Qsp of nearly degenerate mode pairs as
the overlap length L increases. Crossing of the resonant wavelengths
occurs in (a) when anticrossing of their Q factors does in (b). Roman
numerals in (b) mark the first ten local maximums of the Q factors. In
the shaded region in (b), the Q factor is larger than 10 000. Modulation
behavior of the locally high Q factors is clearly visible in (b). The
same modulation behavior is reproduced for the mode chirality in (c).
The inset in (c) gives the angular momentum distribution |αm|2 for
two successive local maximums of the Q factors, showing that the
CCW traveling-wave component is dominant for resonant modes in
the rolled-up microcavity. The nearly degenerate mode pairs could
be resolved in experiments if Qsp > 1, as shown in the shaded region
in (d).

by using EPs [41,42]. Unfortunately, there is no report on
the mode structure (e.g., the nonorthogonality and chirality)
in rolled-up microcavities, although they have a well-defined
structural chirality. One of the main findings of this work is to
show that resonant modes with a high Q factor in a rolled-up
microcavity have a high mode chirality.

To investigate the chirality of a nearly degenerate pair of
modes in rolled-up microcavities, we need to know the CW and
CCW components in the angular momentum representation
[40]. To this end, we expand the wave function by the cylin-
drical harmonics, ψ(ρ,φ) = ∑∞

m=−∞ αmJm(nkρ)exp(imφ),
where Jm is the mth-order Bessel function of the first kind,
k = ω/c is the wave number, and negative (positive) values of
the angular momentum index m correspond to the CW (CCW)
traveling-wave components. It is noted that in the position
representation, m is a positive value, and the resonant modes
take the form of a standing wave with a cos(mφ) or sin(mφ)
dependence. Now, we can define the mode (spatial) chirality
[40] as

α = 1 − min
(∑−1

m=−∞ |αm|2,∑∞
m=1 |αm|2)

max
(∑−1

m=−∞ |αm|2,∑∞
m=1 |αm|2) , (3)

and the results are shown in Fig. 2(c).
An interesting behavior is noted in Figs. 2(a) and 2(b),

which show that the local maximum of Q factors is obtained
when the resonant wavelength splitting of mode pairs is
nearly minimized. This behavior in rolled-up microcavities has
been observed in previous numerical studies [30]. Moreover,
the formation of long-lived modes (i.e., the high Q modes)
near avoided resonance crossings (i.e., the minimum resonant
wavelength splitting) is a typical feature of open or dissipative
systems [25,30]. Therefore, in rolled-up microcavities the
locally increased Q factor can be attributed to the reduction
of external decay channels introduced by the local structure
singularities (i.e., inner and outer notches) through destructive
interference [43]. However, these locally high Q factors are
very sensitive to the overlap length L, so they are less
meaningful from an experimental point of view. Resonant
modes with a high Q factor in a wide range of parameter
space are thus required.

Such a requirement of high-Q resonant modes in a wide
parameter range can be satisfied. As seen in Fig. 2(b), from an
overall perspective, a periodical modulation of high Q factors
is observed. High Q factors above 10 000 emerge (e.g., peak
iv) at a certain overlap length L and reemerge (e.g., peak x)
after the local maximum (Q < 10,000) appears twice (e.g.,
peaks vi and viii). High Q factors in the parameter range
of the modulation satisfy the requirement since their average
value is enhanced by nearly an order of magnitude. Now,
one may doubt whether these nearly degenerate mode pairs
can be resolved in experiments. To check that out, the mode-
splitting quality Qsp is introduced [40,44] as

Qsp =
∣∣∣∣Re(ω+) − Re(ω−)

Im(ω+) + Im(ω−)

∣∣∣∣, (4)

and the results are shown in Fig. 2(d). To resolve the mode
pairs in experiments, Qsp > 1 is needed. Figure 2(d) reveals
that mode pairs in the modulation parameter range of high
Q factors are rather easily resolved, so they could appear
in experiments. In short, a nontrivial behavior of periodical
modulation of high Q factors in the rolled-up microcavity
is observed, which would benefit the high-Q requirement in
experiments.

Moreover, the modulation of the high Q factor is synchro-
nized with the high mode chirality, as seen in Fig. 2(c). This
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FIG. 3. Electric field intensity |ψ |2 of resonant modes at the
first ten local maximums of Q factors marked by Roman numerals
in Fig. 2(b). As can be seen, the Roman numerals also indicate
approximately the number of antinodes in the overlap area. These
modes are classified into two groups in (a) and (b) according to the
parity of the number of antinodes in the overlap area. The black
arrows show the total internal reflection of resonant light, while the
white arrows display its refractive escape.

implies a close relationship between the high Q factor and
the high mode chirality, which is the main finding of this
work because it cannot be explained by simply considering
the destructive interference at the local structure singularities
as mentioned above. In what follows, we try to figure out the
physics behind the nontrivial modulation behavior of the high
Q factor and its close relationship with the high mode chirality
in rolled-up microcavities.

The electric field of resonant modes at the first ten local
maximums of Q factors is shown in Fig. 3. Based on their
similarity to the modulation behavior, these resonant modes
can be classified according to the parity of the number of
antinodes (the local maximum of electric field) in the overlap
area. As seen in Fig. 3, leakage of electric fields at the inner
and outer notches is clearly visible, which limits the high Q

factors. However, the leakage is less when the overlap length
L take values in the parameter range of the modulation, i.e.,
peaks iii (iv) and ix (x) for the resonant modes with an odd
(even) number of antinodes. At these values, the electric field
distributes itself to avoid collision at the notches. If we count
the number of antinodes in the overlap area, they are 3 (4) and 9

(10). That is to say, high Q factors in the rolled-up microcavity
emerge when the number of antinodes in the overlap area takes
integers with an interval of 6. In these cases, the electric field of
resonant modes can distribute itself continuously from a single
wall to another one through the overlap area in a zigzag pattern
without meeting the inner and outer notches, so that Q factors
of these modes can maintain a high value. In other words,
the distribution of electric field in the overlap area presents a
qualitative explanation for the periodical modulation of high
Q factors in rolled-up microcavities.

Obviously, one cannot clarify the mode chirality directly
from the electric field distribution. The Husimi function of
resonant modes in rolled-up microcavities is thus investigated,
which is an effective tool to show the link between the high
mode chirality and the high Q factor of a resonant mode
in phase space. It is obtained by the overlap integral of
the wave function with a coherent state that represents a
minimal-uncertainty wave packet [45]. In the four Husimi
functions, the one for the internal emerging wave is widely
used and hence is considered here. The internal emerging
Husimi function reads [25,45]

H em[φ,sin(χ )] = nk

2π

∣∣∣∣Fhψ [φ,sin(χ )]+ i

kF h∂ψ [φ,sin(χ )]

∣∣∣∣2

,

(5)

with a weighting factor F = √
ncos(χ ), where χ is the angle

of internally incident. The function

hg[φ,sin(χ )] =
∫ 2π

0
d�g(�)ξ [�; φ,sin(χ )] (6)

is the overlap integral of the wave function (g = ψ) or its
normal (radial) derivative (g = ∂ψ) on the microcavity’s
boundary with the minimal-uncertainty wave packet

ξ [�; φ,sin(χ )] = (σπ )−
1
4

∞∑
l=−∞

exp

[
− (� + 2πl − φ)2

2σ

− inksin(χ )(� + 2πl)

]
, (7)

which is centered around [φ,sin(χ )]. Here, the parameter σ

determines the uncertainty of the wave packet. The Husimi
function (5) at the outer boundary of the rolled-up microcavity
is shown in Fig. 4. There are two different regions separated by
the critical lines sin(χ ) = ±1/n. In the region |sin(χ )| > 1/n,
the total internal reflection occurs according to the confined
electric field of a resonant mode. Following the convention
that the Husimi function with sin(χ ) > 0 (sin(χ ) < 0) stands
for the CCW (CW) component, the chirality of the resonant
mode can be easily observed. For example, the modes for
peaks iii and iv have a high chirality because the Husimi
intensity in the CCW region is much greater than that in the
CW region, while the mode for peak vi presents a low chirality.
The region between the critical lines is called the leaky region,
in which refractive escape occurs because χ is smaller than
the critical angle sin−1(1/n) contributed to the far-field of a
resonant mode. Obviously, the Q factor of a resonant mode
is determined by the Husimi function distributed in the leaky
region. For example, the mode for peak vi has more Husimi
intensity inside the leaky region, resulting in a low Q factor,
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FIG. 4. Internal emerging Husimi function at the outer boundary
of the rolled-up microcavity for peaks (a) iii, (b) iv, and (c) vi in
Fig. 2(b). A different color map is applied for the leaky region
bounded by the critical lines sin(χ ) = ±1/n. Black arrows in (c)
are guides to the eye.

while the modes for peaks iii and iv have a high Q factor.
Therefore, the relationship between the high mode chirality
and the high Q factor of a resonant mode is distinguished
by simultaneously inspecting the Husimi function distributed
in the two regions. For example, the modes for peaks iii and
iv have the Husimi function distributed almost in the CCW
region, so they have a high mode chirality with a high Q

factor. In conclusion, the main finding of this work that high
Q factors are due to the high mode chirality of resonant
modes in rolled-up microcavities is further evident and directly
visualized in phase space via the Husimi function.

IV. THE HAMILTONIAN

In order to clarify the modulation of high Q factors and
its close relationship with the high mode chirality in rolled-
up microcavities, a two-mode non-Hermitian Hamiltonian is
introduced in this section. It is based on the Hamiltonian for
two-particle-microdisk systems derived in Ref. [40] owing to
the obvious fact that the inner and outer notches in rolled-up
microcavities play a role similar to that of the two particles
in two-particle-microdisk systems. The Hamiltonian for two-
particle-microdisk systems neglected any interaction between
the two particles because interactions take place across the
microdisk and are generally weak [40], as shown in the left
panel of Fig. 5(a). However, as seen from the right panel of
Fig. 5(a), interactions between the inner and outer notches of
the rolled-up microcavity through its subwavelength-thin wall
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FIG. 5. (a) Left (right): schematic of interactions between two
particles (inner and outer notches) via scattered waves propagating
across the solid core of two-particle-microdisk systems (through the
subwavelength-thin wall of rolled-up microcavities). (b) Scattering
of a waveguide mode at the overlap segment formed by two identical
waveguides in an add-drop-like configuration. (c) Evolution of mode
chirality as a function of the overlap length L calculated with and
without considering interactions between notches.

are very strong, so they have to be taken into account in the
Hamiltonian for rolled-up microcavities.

The “unperturbed” rolled-up microcavity is defined as a
ring microcavity with a wall thickness of t and an outer
radius of Ravg + t/2. Within the slowly varying envelope
approximation, the two-mode Hamiltonian of the unperturbed
system for a given degenerate mode pair with the azimuthal
mode index m and the frequency �0, in the traveling-wave
basis [CCW, (1,0); CW, (0,1)], is given by

H̃0 =
(

�0 0
0 �0

)
. (8)
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The perturbation Hamiltonian caused by the presence of
inner and outer notches with L = 0 can be written, in the
standing-wave basis [even mode, (1,0); odd mode, (0,1)], as

H1 =
(

2V1 0
0 2U1

)
, (9)

where Re(2V1) [Re(2U1)] is the frequency shift of the even
(odd) mode and −Im(2V1) [−Im(2U1)] is the increase of its
decay rate. As a result of this perturbation, the even mode has
to distribute itself with even parity relative to the straight line
formed by the inner and outer notches [32,46]. Spontaneously,
the straight line is antisymmetric with respect to the antinodes
of the odd mode. Hence, |V1| is usually much larger than |U1|.
Both U1 and V1 are obtained numerically. Now, we need to map
the perturbation Hamiltonian H1 in Eq. (9) from the standing-
wave basis to the traveling-wave basis via the transformation
matrix M† = (1, − i; 1,i)/

√
2. The perturbation Hamiltonian

in the traveling-wave basis reads

H̃1 = M†H1M =
(

V1 + U1 V1 − U1

V1 − U1 V1 + U1

)
. (10)

The addition of the overlap segment with a length L can
be treated as the introduction of N small nanoparticles with
the same length �l = L/N � λ (λ is the wavelength) at
a different azimuthal position φ = βj (j = 1,2, . . . ,N and
βN = β). For the j th nanoparticle, the resulting perturbation
Hamiltonian can be obtained in an analogous way, which in
the traveling-wave basis reads

H̃j =
(

V2 + U2 (V2 − U2)e−i2mβj

(V2 − U2)ei2mβj V2 + U2

)
. (11)

By putting all interactions between the fictitious nanoparticles
into an effective interaction Hamiltonian H̃io, the perturbation
Hamiltonian in the traveling-wave basis reads

H̃L =
N∑

j=1

H̃j + H̃io. (12)

At first, we neglect interactions between notches. In
this simple case, H̃io = 0. The total Hamiltonian without
considering interactions between notches takes the form

H̃ = H̃0 + H̃1 +
N∑

j=1

H̃j =
(

� A

B �

)
, (13)

with

� =�0 + V1 + U1 + N (V2 + U2), (14)

A =V1 − U1 + (V2 − U2)
ei2mβ − 1

ei2mβ/N − 1
e−i2mβ, (15)

B =V1 − U1 + (V2 − U2)
ei2mβ − 1

ei2mβ/N − 1
. (16)

Eigenvalues and (not normalized) eigenvectors of this total
Hamiltonian are given by

�± =� ±
√

AB, (17)

ψ± =
( √

A

±√
B

)
. (18)

Therefore, the mode chirality reads

α = 1 − min(|A|,|B|)
max(|A|,|B|) , (19)

and the results are shown in Fig. 5(c).
Off-diagonal elements of the total Hamiltonian (13) de-

scribe the backscattering from the CCW to CW component
(B) and from the CW to CCW component (A). Generally,
A �= B∗, so that the backscattering between CCW and CW
components is asymmetrical, leading to the mode chirality, as
seen in Fig. 5(c). In the situation with β = �π/m, with � ∈ N,
i.e., where the inner notch is on every antinode of the even
mode, A = B = V1 − U1, so there is no chiral mode. Apart
from this, A �= B, and the biggest difference between |A| and
|B| emerges when β = (� + 1/2)π/m, i.e., when the inner
notch is on every node of the even mode. As a result, there
is only one local maximum of mode chirality when the inner
notch varies from one antinode to the next. This theoretical
result gives the same period of the locally high mode chirality
as that observed in the numerical simulations [Fig. 2(c)].

Now, interactions between notches are taken into account
to clarify the modulation of these locally high mode chiralities.
Because of the inner and outer notches, an overlap segment
is formed asymmetrically, connecting the subwavelength-thin
wall [see the inset in Fig. 5(b)]. It resembles two identical
waveguides coupled through a resonant element in an add-drop
configuration [47]. According to the quantum theory of scat-
tering, transport properties of a waveguide mode are modified
and dominated by resonances within the resonant element
[47–49]. As a result, the Lippmann-Schwinger formalism
could be applied to deal with such a resonant scattering
process. However, it is difficult to write down a simple and
explicit expression of H̃io for our asymmetric add-drop-like
structure. An approximate treatment is thus proposed here to
involve resonances within the overlap segment.

As shown in Fig. 5(b), we numerically calculated the scat-
tering coefficients [i.e., the transmission T , reflection R, and
dissipation σ (σ = 1 − T − R) coefficient] of a propagating
wave with frequency �0 from a straight waveguide with a
thickness of t to another one through an overlap segment with
a length of L. Resonances are clearly visible, and the electric
field intensity of these resonant modes has a zigzag pattern
without colliding with the notches, similar to that of modes
in the modulation parameter range of high Q factors (Fig. 3).
Because of these resonances, the perturbation Hamiltonian of
the fictitious nanoparticles H̃L = ∑N

j=1 H̃j has to be modified,
which is valid only on the condition that all the scattering
coefficients are the same as that of L = 0 (equivalent to
neglecting interactions between notches). Since a resonance
is associated with reduced scattering loss, the interaction
Hamiltonian H̃io is treated as linearly proportional to the
noninteraction one

∑N
j=1 H̃j , with the ratio of dissipation

coefficients σ (L)/σ (0) being the proportional coefficient.
Based on this approximation, the total Hamiltonian when
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considering interactions between notches takes the form

H̃ = H̃0 + H̃1 +
N∑

j=1

H̃j + C
σ (L)

σ (0)

N∑
j=1

H̃j , (20)

where C is a fitting parameter. Following the same procedures
as those from Eqs. (14) to (19), the results for the mode
chirality are given in Fig. 5(c). The modulation behavior of
locally high mode chirality is clearly visible and agrees with
the simulation results, indicating the same physical origin.
In conclusion, strong resonant interactions between notches
within the overlap area result in the modulation of locally high
mode chirality in rolled-up microcavities.

V. CONCLUSION

We have pointed out that the Q factor of resonant modes
in rolled-up microcavities is essentially determined by their
mode chirality, which results from an asymmetric transition
between the CW and CCW traveling-wave components. The
modulation behavior of a locally high Q factor (thus high mode

chirality) has been observed, and the origins of strong resonant
interactions between the inner and outer notches via scattered
waves within the overlap area imply that high Q factors could
be possible in rolled-up microcavities. This finding provides
an important clue for fabricating high-performance optical
microcavities based on rolled-up technology. In addition, the
mode chirality of resonant modes in rolled-up microcavities
has the same direction as that of their structural chirality, which
is in contrast to the two-particle-microdisk systems where the
direction of the mode chirality could be alternated. We believe
that this deterministic mode chirality will contribute to the
information on deformed microcavities with further efforts on
this subject.
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