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Abstract
Germanium-Tin (GeSn) alloys have attracted great amounts of attention as these group IV
semiconductors present direct band-gap behavior with high Sn content and are compatible with
current complementary metal oxide semiconductor technology. In this work, three dimensional
tubular GeSn/Ge micro-resonators with a diameter of around 7.3 μm were demonstrated by
rolling up GeSn nanomembranes (NM) grown on a Ge-on-insulator wafer via molecular beam
epitaxy. The microstructural properties of the resonators were carefully investigated and the
strain distributions of the rolled-up GeSn/Ge microcavities along the radial direction were
studied by utilizing micro-Raman spectroscopy with different excitation laser wavelengths. The
values of the strains calculated from Raman shifts agree well with the theoretical prediction.
Coupled with fiber tapers, as-fabricated devices present a high quality factor of up to 800 in the
transmission spectral measurements. The micro-resonators fabricated via rolled-up
nanotechnology and GeSn/Ge NMs in this work may have great potential in photonic micro-
and nanodevices.

Keywords: GeSn nanomembranes, rolled-up nanotechnology, micro-resonators, optical
microcavity

(Some figures may appear in colour only in the online journal)

1. Introduction

Germanium-Tin (GeSn) is an interesting group IV semi-
conductor which exhibits direct band-gap behavior with high Sn
content [1, 2], leading to great potential applications in photo-
nics [3, 4] and microelectronics [5]. The demonstration of the
first GeSn lasing behavior with a Fabry–Perot waveguide cavity
structure in 2015 [3], though achieved at low temperatures
(below 90K), put forward the promising prospect of efficient

laser sources monolithically integrated on a Si photonic plat-
form [4]. Additionally, the wavelength of light emitted from
GeSn lasers lies around 2.3 μm, making it a promising candi-
date for gas sensing applications [4].

Optical microcavities [6], or micro-resonators, are ubi-
quitous in modern photonic and optical devices and have
attracted considerable research attentions [7, 8]. Such optical
structures provide light confinement in a small volume with
resonant circulation, and according to different confinement

Nanotechnology

Nanotechnology 29 (2018) 42LT02 (9pp) https://doi.org/10.1088/1361-6528/aad66e

0957-4484/18/42LT02+09$33.00 © 2018 IOP Publishing Ltd Printed in the UK1

https://orcid.org/0000-0002-0525-7177
https://orcid.org/0000-0002-0525-7177
https://orcid.org/0000-0002-9357-5107
https://orcid.org/0000-0002-9357-5107
https://orcid.org/0000-0002-3314-6108
https://orcid.org/0000-0002-3314-6108
mailto:yfm@fudan.edu.cn
https://doi.org/10.1088/1361-6528/aad66e
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6528/aad66e&domain=pdf&date_stamp=2018-08-14
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6528/aad66e&domain=pdf&date_stamp=2018-08-14


methods, they can be classified as Fabry–Perot microcavities,
whispering gallery mode (WGM) microcavities, distributed
feedback microcavities and photonic crystal microcavities
[6, 9]. Among all the four categories, WGM microcavities,
which confine light with total internal reflections, enjoy the
advantages of high quality factor, low mode volume, high
sensitivity and the compatibility with various materials
[6, 7, 9]. Thus, there have been a broad range of applications
based on WGM resonators such as microlasers [10], bio-
chemical sensors [11] and temperature sensors [12]. Addi-
tionally, researchers recently showed that the limitation of
coupling bandwidth due to conservation of momentum in
WGM resonators can be broken by a slightly deformed
microtoroid structure, further broadening its applications in
nanophotonic circuits and devices [13].

Nevertheless, three dimensional GeSn WGM micro-
cavities with tubular geometries realized by rolling up GeSn
nanomembranes (NMs) are rarely involved. On the one hand,
WGM microcavities with tubular geometries benefit from the
capability of on-chip integration [14] and the uniaxial tensile
strain is introduced during the rolling-up process [15, 16]. On
the other, rolled-up nanotechnology [17] exhibits innovative
applications in photonics [8, 18–21], electronics [22–24],
integrated sensing [25], energy storage [26], biology [27], and
micro-robotics [28–31]. Besides, rolled-up nanotechnology
also enjoys various advantages [7], such as the convenience to
optimize performances of devices via rolling NMs with pre-
defined geometry. For example, the resonant modes of a
microtubular bottle resonator fabricated by rolling up strained
semiconductor bilayers can be tuned by the winding number
and the geometry of the lobe [32, 33]. Therefore, the inves-
tigations of three dimensional tubular WGM devices based on
rolled-up GeSn NMs are of great interests.

In this work, tubular microcavities based on GeSn NMs
were fabricated. Following the description of the design and
fabrication process, the microstructural characterizations were
performed, which presented the information about crystal
quality, lattice constant, and element distributions of GeSn.
The characterization of the rolled-up GeSn/Ge microcavities
via micro-Raman scattering spectroscopy with different
excitation laser powers and wavelengths revealed the strain
distributions along the radial direction, which agree well with
the theoretical prediction. The optical properties of the GeSn/
Ge microcavities were also investigated through transmission
spectral measurements, exhibiting a Q-factor up to 800 at the
wavelength of 1518 nm.

2. Experimental methods

2.1. Growth and characterization of GeSn NMs

In this work, the GeSn NMs were grown on the Ge-on-
insulator wafer (GOI wafer, with 30 nm Ge top layer) via
molecular beam epitaxy with a nominal thickness of 30 nm.
Before the deposition of GeSn NMs, the GOI wafer was
rinsed in 9% hydrofluoric acid (HF) solution for 2 min to
remove the native oxide layer, and then cleaned in deionized

water. During the growth, the substrate temperature was set at
200 °C [34, 35], and the chamber background pressure was
set at 2.2×10−6 Pa. Thermal processing above 350 °C
should be avoided in order to prevent the segregation of Sn
[36]. The as-grown GeSn NMs were then cleaned by ultra-
sonication in actone, ethanol and deionized water for 5 min.
After the cleaning, the surface structures of the GeSn NMs
were characterized by atomic force microscopy (AFM).

2.2. Fabrication of GeSn/Ge microcavities

As the rolling-up process is compatible with the conventional
photolithography processing, the GeSn microcavities in this
work were constructed utilizing pre-defined patterns [37]. In
detail, a layer of photoresist was spin-coated on the cleaned
GeSn NMs at a speed of 3000 r min−1. The plate making
machine (Heidelberg, uPG501) was then utilized to create an
U-shape pattern on the GeSn NMs [32]. The patterned GeSn
NMs were etched using reactive ion etching with a SF6/C4F8
etching gas [3], and then rinsed in ethanol to remove the
photoresist.

After the patterning of GeSn NMs, the sample was
immersed into a 40% HF solution to selectively remove the
sacrificial layer (SiO2 in GOI wafer). The etching rate is
around 60 nmmin−1 [37]. During the etching process, the top
GeSn/Ge bilayer would release and detach from the substrate.
Due to the intrinsic strain in the bilayer introduced during the
deposition, the released NMs would self-roll-up into tubular
microcavities.

2.3. Characterization of GeSn/Ge microcavities

The morphological properties of the as-fabricated microcavities
were characterized via scanning electron microscopy (SEM,
JEOL JSM-6701F). Transmission electron microscopy (TEM,
FEI TECNAI G2 S-TWIN F20) was also utilized to char-
acterized the microstructural properties and element distribu-
tions of GeSn/Ge microcavities. Before the characterization by
TEM, the sample preparation was conducted via focused ion
beam (FIB, FEI Helios NanoLab 600). The thickness of the
prepared GeSn/Ge microcavities cross-section was less than
10 nm to meet the requirement for high resolution TEM
(HRTEM).

Additionally, the micro-Raman scattering spectroscopy
(Horiba JY HR-800) with the 514 nm Ar+laser and 325 nm
He–Cd laser as the excitation source was utilized to analyze
the strain distributions in GeSn/Ge microcavities.

Eventually, in order to characterize the optical properties
of the rolled-up GeSn/Ge microcavities, transmission spectral
measurements at near infrared wavelengths (from 1510 to
1560 nm) were performed through the evanescent field cou-
pling method [38]. Details of the preparation of the fiber taper
have been presented in [39]. The GeSn/Ge microcavities
were adhered to capillaries by silver paste in order to avoid
direct contacts between the tapered fibers and any other
objects on the substrate. The microcavities were then coupled
with the fiber tapers with a gap of ∼100 nm. At resonant
wavelength, light propagating through the waist of the fiber
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taper (with a diameter of approximately 1 μm) tended to
escape and enter the microcavity via coupling, leading to
Lorentzian-shaped dips in the transmission spectrum.

3. Results and discussion

Figure 1(a) shows the AFM image of GeSn NMs, and the
surface roughness (Rq) is measured to be ∼0.783 nm, indi-
cating a smooth surface of GeSn NMs. The fabrication pro-
cess of GeSn/Ge microcavities is illustrated in figure 1(b),
while the insert diagram presents the details about sample
structure. The typical SEM image of a rolled-up GeSn/Ge
tubular microcavity is shown in figure 1(c), and the diameter
of the microcavity is measured to be 7.3 μm. Additionally, the
repeatability of the fabrication process is clearly illustrated in
the statistics of the diameters of microcavities (figure 1(d)).
The diameters of microcavities can be tuned by the thickness
of the bilayer and the intrinsic strain gradient [17, 40].

The details about microstructure of the as-fabricated
GeSn/Ge microcavities are shown in figure 2. The tubular
structure of the microcavity is clearly illustrated in figure 2(a).
According to the magnified image of the microcavity wall
(figure 2(b)), the thicknesses of Ge and GeSn layers are mea-
sured to be 27 and 33 nm, respectively. The high crystal quality

of Ge layer can be clearly observed in its HRTEM image (the
insert of figure 2(b)). The dark part in figure 2(b) is crystalline
Ge, while the intervening gray part is supposed to be amor-
phous due to the damage caused by the Ga ion during FIB. The
GeSn layer, however, are mainly amorphous (figure 2(c)) with
GeSn nanocrystals (GeSn NCs, figure 2(d)) embedded inside.
The scales of NCs are measured to be around 25 nm. The size of
NCs can be controlled by the thickness of NMs [41], chamber
pressure [42] and substrate temperature [42] during deposition,
and can be further tuned by rapid annealing [43, 44] after
growth. The (220) lattice plane of GeSn NCs is identified in
figure 2(d), and the corresponding interplanar spacing is mea-
sured to be d(220)=0.204 nm. Given the lattice constant of Ge
(aGe=0.5658 nm) and α-Sn (aSn=0.6493 nm), the Sn content
in GeSn NCs is calculated to be 13.4% according to the
Vegard’s law [45]:

= - ´ + ´- ( ) · ( )a x a x a1 1Ge Sn Ge Snx x1

Additionally, according to literature [46], under the same
Sn content, the lattice constants of crystalline GeSn should be
larger than the value calculated from Vegard’s law. Thus, the
Sn content in present GeSn NCs is supposed to be slightly
smaller than 13.4%. The element distributions of Ge and Sn
along the dashed red (with GeSn NCs) and green (without
GeSn NCs) lines in figure 2(b) are investigated, and the

Figure 1. (a) AFM image of GeSn NMs. (b) Schematic diagram illustrating the rolling up process of GeSn/Ge bilayer. The magnified
diagram shows the structure of GeSn NMs on GOI wafer. The nominal thicknesses of GeSn and Ge are both 30 nm. (c) SEM image of a
typical GeSn/Ge tubular microcavity. The rolling direction (〈100〉) of NMs is indicated by a white arrow. (d) Statistics of the diameters of
GeSn/Ge microcavities.
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results are presented in figures 2(e) and (f). It is obvious that
the Sn content in GeSn NCs is much higher than that in
amorphous GeSn (a-GeSn).

Micro-Raman scattering is an effective tool to estimate the
strain distributions in semiconductor nanostructures [16, 47].
Figure 3(a) shows a typical Raman spectrum of GeSn NMs
excited by the 514 nm laser. The excitation power is set to be
30mW with a spot size of 1 μm. It should be noted that the
Raman spectrum of GeSn NMs can be fitted into two indivi-
dual sub-peaks. The blue peak centered at 292 cm−1 can be
attributed to the Ge–Ge mode in GeSn NCs [48], while the
green peak centered around 270 cm−1 belongs to the Ge–Ge
mode in a-GeSn [49], agreeing well with the conclusion drawn
from TEM that the GeSn NMs consist of GeSn NCs embedded
in a-GeSn. Additionally, according to literature [48, 50], the Sn

content in GeSn NCs is estimated to be 12%, which is in
accord with the value calculated from Vegard’s law.

Furthermore, in order to investigate the strain distributions of
the rolled-up tubular microcavities along the radial direction,
lasers with two different wavelengths (514 and 325 nm) were
applied. It should be noted that the penetration depth of a laser
into a certain type of material depends on its wavelength [51]. As
schematically illustrated in figure 3(b), the penetration depth of
514 nm laser in Ge is 17.74 nm, while for 325 nm laser the
penetration depth is 8.70 nm [15]. Thus, only surface signal can
be collected for the 325 nm laser, while signal detected for the
514 nm laser represents an average value in much greater depth.
Additionally, when applying micro-Raman scattering to investi-
gate the strain distributions in suspended semiconductor nanos-
tructures (especially tubular microcavities), the local heating

Figure 2. (a) TEM image of the cross-section of a representative GeSn/Ge tubular microcavity. (b) Magnified TEM image of the wall of
GeSn/Ge tubular microcavity, showing the bilayer structure of Ge/GeSn. The thicknesses of the Ge and GeSn layers are measured to be 27
and 33 nm, respectively. The insert presents the HRTEM image of the Ge layer, illustrating its high crystal quality. (c) and (d) HRTEM
images of the amorphous/crystalline GeSn. The (220) lattice plane in GeSn is indicated with white parallel lines between two opposite
arrows, and the corresponding interplanar spacing is highlighted. (e) and (f) Element distributions of Ge and Sn along the dashed red (with
GeSn NCs) and green (without GeSn NCs) lines in (b). Ge/GeSn interfaces are marked.
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effect should be taken into consideration [16]. Thus, we vary the
excitation laser power to eliminate local heating effect and to
identify accurately the Raman shifts contributed by the strain.

The power-dependent Raman measurements of Ge NMs
(GOI wafer, with a Ge thickness of 25 nm) (left) and GeSn/
Ge microcavities (right) excited by 514 and 325 nm lasers are
presented in figures 3(c) and (d), respectively. The corresp-
onding Raman peak positions of Ge–Ge mode are summar-
ized in figure 3(e). It is obvious that the Ge–Ge peak positions
measured from Ge NMs (marked by black line and points)
remain relatively the same despite the variation in excitation
power. On the contrary, the Ge–Ge peak positions obtained
from GeSn/Ge microcavities excited by both the wavelengths
(marked by green and violet dots) shift to lower wavenumber
as the excitation laser power increases. Such Raman shift of
Ge–Ge peak obtained from GeSn/Ge microcavity should be
attributed to the local heating effect, but not due to the dif-
ferent contributions from Ge and GeSn layer, or from GeSn
NCs and a-GeSn in GeSn because of the following reasons.
Firstly, the Raman signal contributions from different layers
and components should not correlate with the excitation
power [15, 51]. In other words, the theoretical contributions
remain the same despite the variation in laser power.

Secondly, the Raman signal contribution from GeSn layer is
much smaller than that from Ge layer. Since the laser decays
as it propagates through Ge, the laser intensity reaching the
Ge/GeSn interface is just 22% of its original value for
514 nm laser, and less than 5% for 325 nm laser. Thus, it is
reasonable to assume that the Raman shifts exhibited in
figure 3(e) are due to local heating effect.

In order to avoid the local heating effect and to approach
the virtual Raman shifts using zero laser power, we apply an
exponential fitting and the results are identified by green and
violet lines in figure 3(e). By extrapolating the fitted curve
into zero laser power, we obtain the virtual Raman shifts. The
Ge–Ge peak position obtained from 514 nm laser shifts
∼−0.89 cm−1 with respect to the bulk Ge peak, and that
obtained from 325 nm laser shifts ∼−1.44 cm−1. Considering
phonon deformation potentials [52], the relation between the
Raman shifts and the uniaxial strain (εxx) generated in GeSn/
Ge microcavities can be expressed as:

w eD = - ´ ( )b , 2xxbulk uni

where Δωbulk represents the difference of Ge–Ge peak between
GeSn/Ge microcavities and bulk Ge, and buni=154 is the
strain-shift coefficient under purely uniaxial stress situation [53].

Figure 3. (a) Typical Raman spectrum obtained from GeSn NMs. (b) Schematic diagram showing the different penetration depths of different
lasers (i.e., 514 and 325 nm). (c) and (d) Power-dependent Raman spectra collected from Ge NMs (left) and rolled-up GeSn/Ge microcavities
(right) excited by lasers with wavelengths of 514 and 325 nm, respectively. (e) The Raman peak positions of Ge–Ge mode in Ge NMs and
rolled-up GeSn/Ge microcavities as a function of the excitation power obtained from (c) and (d). (f) Experimental and calculated strain
distributions along the radial direction of GeSn/Ge microcavities.
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Therefore, the strain distributions along the radial direction
excited by 514 and 325 nm lasers are calculated, and the results
are identified by black points in figure 3(f). According to the
bending theory [54] and considering the rolling-up process of
GeSn/Ge bilayer [16], the outer and inner surfaces of the
microcavities are in tension and compression, respectively.
Additionally, the theoretical strain distributions along the radial
direction can be approximated as linear dependence [15]. In this
way, the strain values of rolled-up GeSn/Ge microcavities are
calculated and highlighted by the red line in figure 3(f), which

are comparable with the values obtained from micro-Raman
spectroscopy. The slight discrepancy between the theoretical and
experimental results can be attributed to the following reasons.
Firstly, focusing the excitation laser spot precisely on the top
region of tubular microcavities with small radius is extremely
difficult, thus the contribution from sidewall is inevitable [16].
Signals from sidewall are actually detected in a smaller depth
than that of signals from the top region, leading to an over-
estimation of the tensile strain values. Additionally, the extra-
polated Raman shifts may still be different from the virtual

Figure 4. (a) Schematic diagram of the transmission spectral measurements system. The laser, detector, fiber, capillary, micrometer screw and
micro-positioning system are marked. (b) Optical microscopy image of a GeSn/Ge tubular microcavity coupled with a vertically placed fiber
taper (approximately 1 μm in diameter) for transmission spectral measurements. The microcavity is adhered to a capillary by silver paste. The
diameter of the microcavity is measured to be 7.83 μm. (c) A representative transmission spectrum of a tubular GeSn/Ge microcavity, the
measured FSR and Q-factor are highlighted.
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values with zero excitation power, resulting in the perturbation
of the obtained strain values.

Eventually, the optical characterization of GeSn/Ge
microcavities was carried out via transmission spectral mea-
surements. The schematic diagram of the transmission spec-
tral measurements system is shown in figure 4(a). The vertical
position of the GeSn/Ge microcavities could be manipulated
by the micro-positioning system with a micrometer screw,
and so the gap between the microcavities and fiber could also
be controlled. Figure 4(b) shows a microcavity coupled with a
fiber taper, and the transmission spectrum of that microcavity
is shown in figure 4(c).

The free spectrum range (FSR) is measured to be
ΔλFSR=19.8 nm, which agrees well with the simulation
result ofΔλFSR=22.0 nm using the theoretical formula [39]:

l l pD = ( ) ( )nD , 3FSR
2

where the resonant wavelength λ is set as 1537 nm, the
refractive index n is set as 4.37 [55], and the diameter of the
microcavity D is set as 7.83 μm. The slight discrepancy
between the experimental value and the theoretical result can
be attributed to the following reasons. Primarily, as there
exists a layer of Ge in the rolled-up microcavity, the refractive
index of Ge should be taken into consideration. According to
[56], the refractive index of a 20 nm thick Ge thin film is
measured to be around 4.4 at 1537 nm, and the value is
supposed be larger for 30 nm thick Ge. Furthermore, the
crystal quality, Sn content and thickness of GeSn is different
between this work and [55], leading to the discrepancy in
their refractive index. Additionally, the strains inside the
GeSn/Ge microcavity would also induce variation of its
refractive index. Utilizing Lorenz fitting, the full width at half
maximum of the WGM peak centered at 1518 nm is measured
to be Δλ=∼1.91 nm, corresponding to a Q-factor of 800
according to Q=λ/Δλ.

4. Conclusion

In summary, tubular GeSn/Ge micro-resonators were fabricated
by rolling up GeSn NMs grown on GOI. Microstructural char-
acterization demonstrated that the GeSn NMs consisted of GeSn
NCs embedded in a-GeSn, and the Sn content in GeSn NCs were
measured to be slightly less than 13.4%. The strain distributions
of the rolled-up GeSn/Ge microcavities were characterized via
micro-Raman spectroscopy. The strain obtained from 325 nm
laser exhibits larger tensile values than that from 514 nm laser,
agreeing well with the bending theory. Transmission spectral
measurements through evanescent field method clearly show the
resonant behavior of the as-fabricated GeSn/Ge microcavities,
which to the best of our knowledge, are the first reported GeSn/
Ge micro-resonators based on rolled-up nanotechnology. The Q-
factor of GeSn/Ge microcavity reaches as high as 800. Such
GeSn micro-resonators based on tubular microcavities could
offer a new design route for Si-based integrated light source, and
serve as a promising candidate for applications in three dimen-
sional photonic components.
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