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Abstract
Atomic layer deposition (ALD)was used to coat a polyethylene terephthalate (PET) polymer substrate
with TiO2film. The TiO2was grown onto the surface with better film coverage by using thicker ALD
deposition. Further evaluation on the coated substrates indicated that the reactive sites of –C=Othat
existed on PET surface played a significant contribution to facilitating the initial ALD growth of the
TiO2 thinfilm. The chemical composition of the coated substrates was characterised using energy
dispersive X-ray spectroscopy, which showed that increasing the TiO2 film thickness increased the Ti
element content. Two growthmechanisms, namely, diffusion growth and direct coordination
through the precursor coordinationwith surface reactive sites of –C=Owith product release occurred
simultaneously in the initial growth of TiO2 coating onto PETpolymer by ALD. The surface alteration
of the coated ALDwas characterised by Fourier transform infrared spectroscopy, which showed that
the hydroxyl –OHgroups emerged in the TiO2ALD film.

1. Introduction

ALDcan produce highly uniform and conformal thinfilms on non-uniformhigh aspect ratio and 3Dporous
surfaces at lowprocessing temperatures. TheALDprocess has become popular in a variety offields, including
semiconductors, displays,flexible electronics and catalysis [1–4]. ALD is a chemical deposition process for
gaseous component adsorption on solid substrates inwhich two complementary self-limiting first- and second-
half reactions are performed successively to generate amonolayer [5–7]. The ability of a thinfilm to grow at low
temperature is one of themost important issues in the deposition on softmaterials such as polyethylene
terephthalate (PET) polymer. Some characteristics of polymers, such as lightness, resilience, flexibility and
transparency, are advantageous in various applications, including packaging,microfabricated devices and
flexible electronics [8, 9]. Brittleness is a common property of inorganicmaterials. However, the diffusion
growth of inorganicmaterials on polymers enables themaintenance of polymer flexibility without cracking
[10, 11]. Film growth on polymers varies depending on temperatures, the presence of polar groups, the growth
ofmaterials and the dosing condition of precursors.

The TiO2-coated PET substrates are potentially employed as the clinical implantedmaterials in improving
the biocompatibility of the polymermaterials [12], UV-screening agent as its ability to absorb in theUV
spectrum [13], optical coating [14], flexible solar cell [15–17], moisture barrier layer [18], self-cleaning surface
[19], andflexible sensors [20]. Additionally, in terms of actual use in the future, the TiO2ALD films on soft
material substrates, particularly polymer surface, would be crucial for their widespread use in industrial
products. This study investigated the growth ability of TiO2film onPETpolymer surface through the ALD
process. The reactive surface groups of –C=Opromoted the initial growth.Meanwhile, as the polymer structure
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consisted of polymer chains, the diffusion growthmechanism also occurred in the first several ALD cycles.
Results indicated that TiO2film growth onto the PETpolymer surface byALDoccurred via twomechanisms.

2. Experimentalmethod

Silicon (Si) andPET filmswere used as substrates. The PETwas cleaned in an ultrasonicmachine (20 min) at a
temperature and power of 35 °Cand 80W, and then dried in a vacuumoven (1 h) at 45 °C. Afterwards, TiO2was
deposited onto the substrates byALDwith various thickness. The tetrakis (dimethylamido) titanium (TDMAT)
andH2Oprecursors were exposed for 20 and 30milliseconds, with purge durations of 15 and 18 s, respectively.
The deposition temperature was set at 120 °C, and the thickness values were in the range of 100–600ALD cycles.
The carrier and purge gases were both argon gas at a flow rate of 20 sccm.

Using a high-resolution scanning electronmicroscope, a cross-sectional image of the coated silicon and a
surface view of the coated PETwere produced (JEOL, JSM-IT300). Energy dispersive X-ray spectroscopy (EDS)
was used to characterise the coated substrate’s elements. ThermoNicolet Nexus 670 (Thermo Scientific,
Waltham,MA,USA) and Smart iTR (diamondATR, Thermo Scientific) spectral range of 600–4,000 cm−1 with a
resolution of 3.81 cm−1 was used tomeasure thefilms’ Fourier transform infrared (FTIR) spectra.

3. Results andDiscussion

After 100 and 300 cycles, cross-sectional SEMpictures of anALD-produced Si substrate coatedwith TiO2films
are shown infigure 1. The images for 100 and 300ALD cycles showed smooth surfaces with thicknesses of
∼ 32.83 and∼ 68.63 nm, respectively. It indicates that the ALDprocess parameters can be used to deposit TiO2

layer onto PET and Si surfaces as both substrates are coated simultaneously at the same time and process in the
ALD reactor.

Figures 2(a)–(d) show SEM images of untreated PET andPET coatedwith TiO2films byALD at 100–600
ALD cycles. Figure 2(a) shows that the PET surface without the ALD filmhas a smoothmorphology. The
presence of ALD layer led to the emergence of pimples on PET surface coatedwith TiO2filmwith a thickness
range of 100–600 cycles by ALD, as shown infigures 2(b)–(d). The number of pimples decreasedwith increasing
TiO2 thickness (figures 2(b)–(d)). This result indicated that the increase of the number of ALD cycles improved
the ALD layerwith betterfilm coverage, as shownby the reduction of pimple formation and the increased
smoothness of the surface. The PET coatedwith TiO2filmwith the highest coverage had a coating thickness of
600ALD cycles (figure 2(d)). These findings are consistent with our previous research, inwhich the presence of
ALDfilm reduced surface roughness. Surface roughness dropped significantly onALD-deposited surfaces with
betterfilm coverage [21].

A polymer is a hugemolecule ormacromolecule constructed of numerous subunits, while amacromolecule
consists of a structuremade up ofmultiple repeating units [22]. Polymers, like PET, are composed ofmany
polymer chains withmicroporous structures that contain space between the polymer chains. The emergence of
pimples ismost likely due to the influence of the early growth in the first few cycles via the diffusion growth
process, which can break the chain of polymer backbone. As the pimples grow and expand to the surface’s edge,
the gap between the polymer chains in the pimples becomes looser than on a regular PET surface. These
phenomenamay explainwhy the thinner ALDfilm obtainedwith fewer ALD cycles still lacks a coverage layer,
andwhy the lownumber of ALD cycles are insufficient tofill the space between polymer chains, resulting in a

Figure 1. Images of silicon coveredwith TiO2 layers in cross-sectionwith thicknesses of (a)∼ 32.83 nm for 100ALD cycles and
(b)∼ 68.63 nm for 300ALD cycles.
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relatively higher surface roughness. Increasing the number of ALD cycles to generate a thicker ALDfilm is
required to improvefilm coverage and reduce surface roughness. TheTiO2 nucleation clusters willfill the space
between polymer chains as the cycle number increases, finally coalescing and closing the space to be continuous.
Meanwhile, the presence of C=Ogroups on the PET surface contributes to the facilitation of ALDgrowth
during thefirst fewALD cycles in order to create the initial closedALD layer. After the space between the
polymer chains is completely closed, the TDMAT andH2O exposures enable to grow the TiO2 films normally
since the functional -OHgroups on theTiO2 surface have been created.

The pimples that emerged onPET polymer coatedwith TiO2ALD layer are shown infigures 2(b)–(d). The
chemical composition evaluationwas conducted by using EDS, as shown in figure 3(b). Figure 3 shows the SEM
image (figure 3(a)) and the EDS-spectra (figure 3(b)) and focuses on the pimples on the PETpolymer coatedwith
TiO2film byALD. Awhite pimple was shown at highmagnification. It emerged on the PET surface during the

Figure 2. SEM images of the coated PET. (a)Uncoated PETfilm and the PET surface coatedwith TiO2 layers with cycle number of (b)
100, (c) 300 and (d) 600ALD cycles.

Figure 3.Evaluation of (a) SEM image and (b)EDS spectra of a white pimple on the PET surface coatedwith TiO2 byALD.
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ALDdeposition process (figure 3(a)). The chemical composition of the pimple (figure 3(a)) included carbon and
oxygen at quantities of 72.82%and 27.18%, respectively, as shown in the EDS spectra.

PET is a semi-crystalline polymer having surface groups that are responsive to ALDnucleation of C=Opolar
groups [23, 24], allowing the polymer backbone to showLewis base properties andmaking the polymer surface
reactive during precursor exposure, resulting in a strong Lewis acid [25–27]. By exposing the carbonyl site of
C=O, coordinatingwith the precursor (i.e. TDMAT; Lewis acid to form an oxygen-titanium-(N(CH3)2)3)
becomes possible [28–31]. A reaction that leads to the formation of a covalent titanium-oxygen bond can occur
in the ALDgrowth of TiO2 onto the PET surface viaN(CH3)2migration fromTDMAT to the electrophilic
carbon site of the PETpolymer [26, 32–34].

The TDMAT reactionwith the carbonyl forming acetal groups and the transfer ofN(CH3)2 to the carbon of
the polymer backbone eliminates the carbonyl stretch of C=O [26, 35]. AfterH2O exposure, the acetal unit of
N(CH3)2 likely reactedwithwater, forming –OHand releasingNH(CH3)2. During the reaction, the generated
functional –OHgroups can befilled by the subsequent precursor exposure. Using this growthmethod, the
carbonyl site of C=Ocan be replaced by related components of the TiO2ALDmaterial. TheC=Ogroups are
most commonly found in the polymer subsurface. The interaction of the precursor and the carbonyl site can
break hydrogen bonding, causing the polymer chain framework to open, allowing the precursormolecule to
diffuse further into the subsurface region and affecting the smoothness of the coated surface [21, 36–39]. During
the diffusion process,molecular weight at the near surface of the PET substratemay decrease because of the
breaking of the polymer chains. This abovementioned phenomenonmay be indicated by the emergence of the
pimples on the PET surface coatedwith TiO2 film byALD. The decrease inmolecular weight enabled the further
promotion of the initial growth due to the enhancement of the number of reactive sites on the PET polymer
surface inwhich thefirst coordination of the carbonyl site of the PETpolymerwith precursor (i.e., tetrakis
(dimethylamido) titanium) can benefit from the newpolar groups emerging that came from the breaking of
polymer chains. Surfacemorphology before and after TiO2ALD coating can reveal these typical ALD growth
mechanisms.

The EDS spectra of PETwithout coating (figure 4(a)) and PETpolymer coatedwith TiO2 film byALDwith
thicknesses of 100–600ALD cycles (figures 4(b)–(d)) are shown infigure 4. The spectrumof bare PETwas found
to be dominated byC andO elements, with 73.85%and 26.15 percent of the total weight, respectively. The
presence of ALD coatingwith various thicknesses onto the PETpolymer surface led to the reduction of theC
elements to 71.21%, 68.88%and 69.45% for the PET polymer coated TiO2 filmswith thicknesses of 100, 300 and

Figure 4.EDS spectra of the coated PET (a)Uncoated PETfilm and PET surface coatedwith TiO2films of (b) 100, (c) 300 and (d) 600
ALD cycles.

4

Mater. Res. Express 10 (2023) 096401 ERiyanto et al



600ALD cycles, respectively. This finding implied that polymer chains formed fromCelement were broken
down and reactedwith the ALDprecursors during the ALD reactionmechanismprocess.Moreover, the ALD
growthmechanismof TiO2 onto the PET surface startedwith the diffusion growthmechanism. The presence of
ALD coating increased theOquantities; O content increased to 28.42%, 30.55%and 29.66% inweight for PET
polymer coatedwith TiO2filmswith thicknesses of 100, 300 and 600ALD cycles, respectively. Thisfinding
indicated that the increase of the end chainwithO atoms due to the broken chain of polymer backbonewas
obtained during the diffusion growthmechanism. The emergence of a new end chainwithO atoms resulted in
the reactionwith Ti of TDMAT,which previously coordinated with the carbonyl site of C=Oby transferring a
N(CH2)2 to the polymer backbone. Some of the achieved end chains withO atoms acted as reactive sites, which
in turn reactedwith the subsequent TDMAT exposure. The oxygen concentration on the PET surface changed
after the TiO2filmwas deposited usingALD, and this is ascribed to the fact that the oxygen density of theO in the
Ti-O bonds on the uppermost surface of the TiO2ALD layer is larger than the oxygen density of theO in the
C=Ogroups on the uncoated PET surface. This phenomenon is consistent with our previous studies employing
ALDonPET thatwas coveredwith oxide thinfilms, which demonstrates that the oxygen concentration rises as a
result of thesefilms presence [21, 40]. Figures 4(b)–(d) clearly show that the Ti element content improvedwith
increasing thickness of the TiO2ALD coating. Ti element contents were 0.36%, 0.56% and 0.88% for the PET
polymers coatedwith TiO2with thickness values of 100, 300 and 600ALD cycles, respectively.

Figure 5 shows the infrared spectra of PET surface with andwithout TiO2ALD coatingwithin the range from
600 to 4000 cm−1. Chemical structure alteration of PET surface due to the presence of TiO2ALD layer can be
observed through the peak change of infrared band in the region. Low-molecular-weight compounds are
producedwhen the ALDgrowth is via diffusionmechanism; the formed nucleation from the precursor reaction
may collide with the near surface polymer structure to cause the scission of the polymer chains [41]. The
deposited TiO2ALDfilmwas responsible for the alteration of the FTIR spectra (figure 5). These spectral changes
were clearly visible in the bands of 781, 876, 1024, 1099, 1241, 1712, 2357, 2964 and 3429 cm−1. Among these
bands, the absorption peak at 3429 cm−1 correspondedwith the hydroxyl group (–OH) [40, 42, 43], which
played an important role in theALD growth after the surfacewas covered by the coalescence of the TiO2ALD
nucleation. The amplitude of the transmittance peak at 3429 cm−1 was slightly increased by presence the TiO2

ALDfilm, and it was further enhancedwith increasing film thickness. This finding suggested the elevated density
of hydroxyl –OHgroups on the surface of the TiO2filmwith a thickness of 600ALD cycles.

4. Conclusions

ALDwas used to successfully deposit TiO2 coating onto the PETpolymer substrate, as indicated by the alteration
of the surface appearance and chemical composition. By increasing the TiO2film thickness, a deposited ALD

Figure 5. FTIR spectra of (a) uncoated PETfilm and the PET surface coatedwith TiO2films of (b) 300 and (c) 600ALD cycles.
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layer with better film coveragewas achieved, as shownby the reduction of the number of pimples. In general, the
presence of the TiO2ALD layer on the PET substrate led to the increase in oxygen element quantity. The content
was 26.15%on the uncoated PET. The content increased to 28.42%, 30.55%and 29.66%on the PET substrate
coatedwith TiO2filmwith 100, 300 and 600ALD cycles, respectively.Meanwhile, the Ti element content
increasedwith increasing thickness of the TiO2ALD layer, i.e., 0.36%, 0.56% and 0.88% for the PET substrate
coatedwith TiO2with thickness values of 100, 300 and 600ALD cycles, respectively. The presence of TiO2 ALD
led to the formation of hydroxyl –OHgroups, which increased in quantity on the PET surface coatedwith
thicker TiO2 film byALD. Study of the ALD growthmechanisms on PET polymer surfaces withmicroporous
characteristics, owing to the fact that the substancewas created from anetwork of polymer chains with spaces
between them,with typical reactive sites of−C=Ogroups can encourage the exploration ofmany different ALD
applications with a variety of ALDmaterials on bothflat and complex substrates due to the ability of theALD
process to grow thinfilms conformally onto the substrates of non-uniform and three-dimensionally porous
structure surfaces like polyurethane and polyimide porous sponges.
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