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Based on a mode-expansion theory under single-mode approximation, we derived the scatterings parameters
for a general one-dimensional photonic grating composed of two different materials, and then established
an effective-medium theory for such a composite by equating the obtained scattering parameters to those
of a homogeneous medium. Our effective-medium theory well describes the grating structures with general
material and geometrical parameters, and recovers two previous formulas, which are valid only at certain limiting
conditions. The theory is justified by full-wave simulations and microwave experiments.
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I. INTRODUCTION

Metamaterials are electromagnetic composites constructed
by subwavelength-sized microstructures, and thus can ex-
hibit tailored effective permittivity ε and permeability μ.
Metamaterials have attracted much attention recently due to
their strong abilities to manipulate electromagnetic waves,
leading to many fascinating physical effects unattainable
in naturally existing materials [1–7]. In this research field,
effective-medium theory plays a crucial role since it serves
as a bridge to link theories, which are frequently conducted
on model hypothetical systems, and experiments, which are
always performed on realistic metamaterial systems with
complex microstructures. Therefore, a good effective-medium
theory, which can precisely predict the effective parameters of
complex metamaterials, is always highly desired.

As a particular class of metamaterial, grating structures
consisting of alternative stacking of two layers with subwave-
length thicknesses and distinct electromagnetic properties
[see Fig. 1(a)] have been widely studied in recent years.
Many interesting physical effects were discovered based on
such structures, such as hyperlensing [8–10], focusing [11],
cloaking [12,13], slow-light transport [14], and radiation
lift-time engineering [15–18]. To describe the electromagnetic
properties of these systems, one frequently used the standard
formulas in which the effective ε, or the inverse of effective
ε, is written as a volume average of local permittivity or the
inverse of local permittivity, depending on the polarization
[19,20]. However, since these formulas were derived in the
long wavelength limit, they are valid only for grating structures
strictly satisfying the long-wavelength-limit condition, that
is, the optical thicknesses of both layers should be much
smaller than the input wavelength. Whenever the permittivity
and/or permeability of a single layer exhibits very large values,
such long-wavelength-limit formulas become invalid, even
though the whole system still satisfies the subwavelength
condition (i.e., the lattice constant of the grating is smaller
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than wavelength). On the other hand, based on the mode-
expansion theory, a delicate approach [21,22] was proposed
to homogenize such AB systems, which does not require
a strict long-wavelength-limit condition. Unfortunately, the
developed theory is limited to the special case that one layer
must be a perfect electric conductor (PEC) [21]. Given so many
interesting applications/phenomena already discovered based
on these systems [8–18], and given considerable efforts made
on developing appropriate effective-medium descriptions for
such systems [23–28], we feel that an effective-medium theory
for such grating structures, which is valid under more general
conditions, is highly desired.

In this work, we establish a theory to study the effective-
medium properties of one-dimensional gratings with arbitrary
constitutional and geometrical parameters. Our effective-
medium theory not only recovers those previously derived
formulas valid only at certain limiting conditions, but works
well far beyond these limitations to nearly cover the whole
parameter spaces as long as the subwavelength condition is
satisfied. Finite-difference-time-domain (FDTD) simulations
and microwave experiments are performed on realistic struc-
tures to justify our theory.

Our paper is organized as follows. We first derive the
effective-medium theory in Sec. II, and then justify its validity
in Sec. III by full-wave simulations. Section IV is devoted to
a detailed comparison between our effective-medium theory
and two previous formulas. After presenting the experimental
confirmation of our effective-medium theory in Sec. V, we
conclude the paper in Sec. VI.

II. EFFECTIVE-MEDIUM THEORY

Figure 1 schematically depicts the geometry of our system,
whose unit cell contains two layers with thicknesses dA and
dB , and electromagnetic parameters εA,μA and εB,μB . We
are primarily interested in the effective permittivity εxx

eff of the
structure, since it is this component that caused strong debates
and confusions in previous studies [24–26]. To study εxx

eff , we
assume that a transverse-magnetic (TM) polarized light (with
�E||x̂) is normally coupled into the grating through the xy
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FIG. 1. (Color online) Schematic picture of (a) the grating struc-
ture under study and (b) its effective medium model.

interface [Fig. 1(a)], and study the corresponding light scat-
tering problem. Obviously, light scatterings at this interface
cannot be studied by a simple 2 × 2 transfer-matrix method
(TMM), since higher-order diffractions are inevitable [see
Fig. 1(a)]. Our strategy to determine the effective parameters
εxx

eff ,μ
yy

eff of the given system is described as follows. We first
employ the rigorous mode-expansion theory to calculate the
scattering coefficients of the system [Fig. 1(a)], and then derive
analytical formulas for the zero-order transmission/reflection
coefficients based on a single-mode approximation. Finally,
the effective-medium parameters are fixed by equating the
obtained zero-order scattering coefficients to those of a ho-
mogeneous medium under the same illuminations [Fig. 1(b)].
Without causing confusion, in what follows we neglect the
superscripts xx and yy in εxx

eff and μ
yy

eff .
According to the mode-expansion theory, we need to first

expand the electromagnetic fields to linear combinations of
eigenmodes in different regions. For the present configuration,
electromagnetic eigenmodes in region I (air region above the
grating, see Fig. 1) are just diffraction modes, which are TM-
polarized plane waves taking parallel wave vectors k(I)

x,n = n ·
2π/d (n = 0, ± 1, ± 2, . . .) with d = dA + dB being the peri-
odicity of our system. The corresponding field patterns are de-

noted by [ �E(I)
n (x), �H (I)

n (x)]e±ik
(I)
z,n·z where k(I)

z,n =
√

k2
0 − (k(I)

x,n)
2

with k0 = ω/c and ± denote forward and backward modes,
respectively. In region II, which is the semi-infinite space occu-
pied by the grating, the relevant electromagnetic eigenmodes
are a series of Bloch waves characterized by Bloch wave
vectors Kx,q = q · 2π/d with q = 0, ± 1, ± 2, . . . . Since
region II exhibits translation-invariant symmetry along the z

axis, the eigen-wave-functions in this region can be written in
general as [ �E(II)

q (x), �H (II)
q (x)]e±ik

(II)
z,q ·z with perpendicular wave

vectors k(II)
z,q being unknown parameters to be determined.

Meanwhile, eigenmodes in such AB periodic systems can be
studied by a standard TMM imposing the Bloch condition
along the x direction, i.e., �E(II)

q (x + d) = eiKx,qd �E(II)
q (x) and

�H (II)
q (x + d) = eiKx,qd �H (II)

q (x). A straightforward calculation
shows that, given a frequency ω and thus k0 = ω/c, k(II)

z,q are
correlated with the Bloch wave vector Kx,q by the following
equation [29] (see Appendix A),

2 cos
(
kA
x dA + kB

x dB

) −
(

εBkA
x

εAkB
x

+ εAkB
x

εBkA
x

− 2

)

× sin
(
kA
x dA

)
sin

(
kB
x dB

) = 2 cos(Kx,qd), (1)

where

kA
x =

√
εAμAk2

0 − (
k

(II)
z,q

)2
, kB

x =
√

εBμBk2
0 − (

k
(II)
z,q

)2
. (2)

Solving Eq. (1) yields a series of k(II)
z,q for all eigenmodes.

The corresponding wave functions [ �E(II)
q (x), �H (II)

q (x)] can be
easily obtained by the TMM calculations.

With eigenmodes in both regions known, we can formally
express the total E fields in different regions as

�E(I)
total(x,z) = �Einc(x)eik0·z +

∑
n

rn
�E(I)

n (x)e−ik
(I)
z,n·z

(3)�E(II)
total(x,z) =

∑
q

tq �E(II)
q (x)eik

(II)
z,q ·z,

where �Einc(x)eik0·z = �E(I)
0 (x)eik0·z is the incident field, rn

denotes the reflection coefficient for the nth mode in region I
and tq the transmission coefficient for the qth mode in region
II. H fields satisfy two similar equations. We note that E and H
components of these eigenmodes are not totally independent,
but rather correlated with each other via

E(I)
n,x(x) = k(I)

z,n

ωε0
H (I)

n,y(x)
(4)

E(II)
q,x(x) = k(II)

z,q

ωε0ε(x)
H (II)

q,y (x),

where we have defined ε(x) = εA for x located inside layer A
and ε(x) = εB for x located inside layer B. According to the
field continuity conditions at the z = 0 interface, we get from
Eq. (3) that

E
(I)
0,x(x) +

∑
n

rnE
(I)
n,x(x) =

∑
q

tqE
(II)
q,x(x)

(5)
H

(I)
0,y(x) +

∑
n

rnH
(I)
n,y(x) =

∑
q

tqH
(II)
q,y (x).

We can use the orthonormal properties of those eigenmodes
to derive the equations satisfied by the expansion parameters
{rn,tq}. In region I, it is easy to verify that eigenmodes (diffrac-
tion modes) satisfy the following orthonormal conditions∫

u.c.

[
E(I)

m,x(x)
]∗ · E(I)

n,x(x)dx = δm,n, (6)

where the integrals are performed within a unit cell. The
orthonormal conditions for H (I)

n,y(x) can be derived from
Eqs. (4) and (6). However, things are quite nontrivial for the
eigenmodes inside region II, where the orthonormal conditions
should now be written as∫

u.c.

(
1

ε(x)
H (II)

q,y (x)∗ · H
(II)
q ′,y(x)

)
dx = δqq ′ , (7)

in which a metric term 1/ε(x) must be added [30] (see
Appendix B). Again, the orthonormal conditions for E(II)

q,x(x)
can be derived from Eqs. (7) and (4) [30]. In the limiting
case of one layer being PEC (i.e., let εA(x) → −∞), we note
that both E and H fields vanish inside layer A so that Eq. (7)
recovers the conventional orthonormal conditions satisfied by
the waveguide modes in layer B sandwiched by two PEC walls
(e.g., Eq. (A7) in Ref. [31]).
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Employing the two orthonormal conditions Eqs. (6)–(7)
[32], we can derive from Eq. (5) a set of equations to determine
the expansion coefficients,

(1 − r0)
(
SH

0q

)∗ +
∑
n�=0

[
rn

(
SH

nq

)∗] = tq

(8)
δn0 + rn =

∑
q

tqS
E
nq,

where the S parameters are defined by

SE
nq =

∫
u.c.

(
E(I)

n,x

)∗ · E(II)
q,xdx

(9)
SH

nq =
∫

u.c.

(
H (I)

n,y

)∗ · 1

ε(x)
H (II)

q,y dx,

which represent the overlapping between different modes in
two regions.

In principle, the scattering coefficients {tq ,rn} can be
obtained by numerically solving Eq. (8) with enough modes
considered. To retrieve the effective-medium properties of
the system, we need to derive the analytical formulas for
the zero-order scattering coefficients, which can be done
based on a single-mode approximation [i.e., retaining only
the fundamental modes (labeled by indexes n = 0,q = 0)
in both regions]. Such an approximation is justified when
the effective overlapping integral between two fundamental
modes (S00)2 = SE

00 · (SH
00)∗ is the dominant term among all

overlapping integrals (Snq)2 = SE
nq · (SH

nq)∗. Under such an
approximation, we can solve Eq. (8) rigorously to get the
reflection coefficient for the specular mode as

r0 = (S00)2 − 1

(S00)2 + 1
. (10)

Mapping our system to a homogeneous medium [see
Fig. 1(b)] with effective parameters εeff,μeff , and noting that
the reflection coefficient at the surface of such a medium is
r0 = (Zeff − 1)/(Zeff + 1) with Zeff = √

μeff/
√

εeff , we found
that the effective impedance of our grating structure is

Zeff = (S00)2. (11)

On the other hand, since we only consider the fundamental
mode inside the grating, which is characterized by a wave
vector k

(II)
z,0 , mapping our medium to a homogeneous effective

medium means that the effective refraction index of the grating
must be

neff = √
εeff · √

μeff = k
(II)
z,0

/
k0. (12)

Solving Eqs. (11)–(12), we finally get the following
analytical formulas

εeff = k
(II)
z,0

k0 · (S00)2

(13)

μeff = k
(II)
z,0 · (S00)2

k0

to determine the effective parameters of our grating medium.
Two involved physical quantities, k(II)

z,0 ,(S00)2, can be computed
by solving Eqs. (1)–(2) and (9).

At this point, it is helpful to discuss under what conditions
the single-mode approximation is valid. In most cases where
the subwavelength condition d 	 λ is satisfied, such an
approximation is valid since all high-order diffraction modes
in air are evanescent waves and the high-order modes inside the
grating take imaginary wave vectors due to the subwavelength
confinement in lateral directions. However, we will show
that in some particular situations, such an approximation
becomes invalid even though the subwavelength condition is
still satisfied.

III. VALIDATIONS BY NUMERICAL SIMULATIONS

We employ full-wave simulations to verify the newly estab-
lished effective-medium theory based on two representative
examples. The first example is a dielectric/air grating with
parameters εA = 40,μA = 1,εB = μB = 1, and dA = 3dB .
For any frequency satisfying the subwavelength condition,
i.e., k0d/2π 	 1, we can employ our theory to determine
the effective parameters of the structure. εeff and μeff thus
obtained are plotted in Fig. 2(a) as functions of frequency. In
the long wavelength limit where k0d/2π → 0, we find that
the calculated εeff and μeff approach to those values obtained
by standard volume average method [20], i.e., ε̄ = 3.721
and μ̄ = 1. However, deviations from these long-wavelength-
limit values become non-negligible as frequency increases,
especially for μeff . These results appear quite counterintuitive
at first glance since the constitutional materials constructing
our grating are all purely dielectric. Such a magnetic response,
although very weak here, must be contributed by displacement
currents excited inside the dielectric layers.

FIG. 2. (Color online) (a) Effective parameters of a dielectric/air
grating calculated by our effective-medium theory. (b) Transmission
and reflection spectra of a 15d-thick slab of such grating structure,
calculated by FDTD simulations on realistic system (symbols) and
our effective-medium theory on model system (lines). Here the
constitutional parameters are εA = 40,μA = 1,εB = μB = 1, and
dA = 3dB .
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FIG. 3. (Color online) Transmittance and reflectance for two
slabs of AB gratings with different thicknesses h, calculated by FDTD
simulations on realistic systems (symbols) and our effective-medium
theory on model systems (lines). Here, the working wavelength is
fixed as λ = 25d . In these AB structures, the B layer is always fixed
as air while the A layer is a dielectric with (a) εA = 40 and a metal
with (b) εA = −100.

To justify our effective-medium theory, we employ FDTD
simulations to calculate the transmission/reflection spectra of
electromagnetic waves through a slab of such AB grating
with thickness h = 15d, and then compare in Fig. 2(b) the
FDTD results with those calculated by a standard TMM on a
homogeneous slab of the same thickness with electromagnetic
parameters given by εeff,μeff as shown in Fig. 2(a). Excellent
agreement is noted between FDTD and the effective-medium-
theory results in the whole frequency region considered. We
next fix the wavelength at λ = 25d to compute the trans-
mittance and reflectance of electromagnetic waves through
a series of slabs of our gratings with different thicknesses
h. Comparison between FDTD and effective-medium theory
shown in Fig. 3(a) indicates that our theory can well reproduce
the full-wave simulations on realistic structures.

The second example we study is a metal/air grating,
which was frequently studied in the literature as a hyperbolic
metamaterial [21,27,33]. The unit cell is the same as that of the
first example, only with the A layer replaced by a metal layer
described by a Drude-like dielectric function εA = 1 − λ2/λ2

p

with λp = 1.875d denoting the plasmon wavelength. We
employ our effective-medium theory to calculate εeff,μeff

of this system and plot the obtained results in Fig. 4(a).
Compared with the case of dielectric AB grating [see Fig. 2(a)],
we find the present metal/air grating exhibits a diamagnetic
response with μeff < 1. We also note that even at very low
frequencies, the calculated μeff does not converge to the long-
wavelength-limit value μ̄ = 1, indicating the failure of the
naı̈ve long-wavelength-limit formulas in studying this system.
Such a strong diamagnetic response has been noted in previous
studies [34]. Again, to justify our effective-medium theory,
we perform two series of FDTD simulations similar to those
for the dielectric/air systems, and compare the results with

FIG. 4. (Color online) (a) Effective parameters of a metal/air
grating calculated by the effective-medium theory. (b) Transmission
and reflection spectra of a 15d-thick slab of such grating structure,
calculated by FDTD simulations on realistic system (symbols) and
the effective-medium theory on model system (lines). Here the con-
stitutional parameters are εA = 1 − λ2/λ2

p with λp = 1.875d,μA =
1,εB = μB = 1, and dA = 3dB .

those calculated by our effective-medium theory. Comparisons
shown in Fig. 3(b) and Fig. 4(b) justified our effective-medium
theory for such a system.

IV. COMPARISONS WITH PREVIOUS THEORIES

Our effective-medium theory can cover two previously
developed formulas under certain limiting conditions. Con-
sider first the limit of εA → −∞ when layer A becomes
a PEC so that both the E and H field inside layer A are
exactly 0. In such a case, the fundamental mode in the
AB structure is just a transverse electromagnetic waveguide
mode trapped only inside layer B with wave vector given by
k

(II)
z,0 = k0

√
εBμB . Meanwhile, it is straightforward to use the

normalized wave function of such a transverse electromagnetic

mode to demonstrate that SE
00 = k0

ωε0

√
μBdB

d
, SH

00 = ωε0
k0

√
dB

εBd
,

and thus

(S00)2 =
√

μB

εB

dB

d
. (14)

Putting the above results into Eq. (13), we find the effective
parameters are now given by

εeff = εBd/dB
(15)

μeff = μBdB/d,

which are just the results obtained by the PEC-based effective-
medium theory for such systems [21].

Consider the second limiting case that λ0/
√

εAμA 
 dA,
λ0/

√
εBμB 
 dB, which represents the true long wavelength

limit. In this limit, noting that k
(II)
z,0 is of the same order with k0,
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we thus expect that both kA
x dA and kB

x dB are small parameters
[see Eq. (2)]. Expanding Eq. (1) in terms of kA

x dA and kB
x dB ,

and only retaining the leading-order terms, we get

(
kA
x dA

)2 + (
kB
x dB

)2 +
(
εBkA

x

εAkB
x

+ εAkB
x

εBkA
x

) (
kA
x dA

)(
kB
x dB

)= 0.

(16)

Putting Eq. (2) into Eq. (16), we solve the resultant equation
to get (

k
(II)
z,0

)2 = μAdA + μBdB

εA
−1dA + εB

−1dB

k2
0 . (17)

Let us now check the overlapping functions SE
00 and SH

00.
Since kA

x dA → 0 and kB
x dB → 0, we expect that Hy does not

vary too much within both layer A and layer B. In addition,
considering that Hy should be continuous across the AB
boundary, it is a good zero-order approximation to assume
that Hy keeps at a constant value within the entire unit cell.
Adopting the orthonormal condition Eq. (7), we find that the
wave function of the fundamental mode inside region II can
be approximately written as

H
(II)
0,y ≈ 1√

ε−1
A dA + ε−1

B dB

. (18)

The corresponding wave function for E
(II)
0,x can be obtained

with Eqs. (18) and (4). Put the above results into Eq. (9),
we find from simple computations that the two overlapping
integrals are

SE
00 = k

(II)
z,0

ωε0

√
ε−1
A dA+ε−1

B dB

d
(19)

SH
00 = ωε0

k0

√
ε−1
A dA+ε−1

B dB

d
.

Therefore, the two effective parameters can be derived from
Eqs. (19) and (13), which are

εeff = d

ε−1
A dA + ε−1

B dB
,

(20)
μeff = μAdA + μBdB

d
.

Equation (20) recovers the well-known formulas derived in
the long wavelength limit for this polarization [19].

We now compare our effective-medium theory with these
two previous formulas under more general conditions. In
particular, we will check the validity regions of these dif-
ferent versions of effective-medium theory. To quantitatively
describe how good an effective-medium theory is, we define a
physical quantity

δT = 〈|tEMT − tFDTD|〉 , (21)

which measures the difference between the (complex)
transmission coefficient tEMT calculated by a particular
effective-medium theory on a homogeneous model system
and the FDTD-calculated complex value tFDTD on a realistic
inhomogeneous AB grating system. To suppress the
accidental fluctuations caused by Fabry-Perot resonances

FIG. 5. (Color online) (a) δT for a series of AB gratings with
varying εA, calculated by the present effective-medium theory
(circles), the PEC-based formula Eq. (15) (triangles), and the long-
wavelength-limit formula Eq. (20) (squares). (b) Effective parameters
of the systems calculated by the present effective-medium theory, with
inset depicting how the two overlapping integrals vary against εA.

through a finite-thickness slab, we average |tEMT − tFDTD|
over samples with thicknesses varying from 0.25d–15d. The
effective-medium theory can be our theory developed here,
and can also be the two previous formulas [i.e, Eq. (15)
and Eq. (20)]. By computing δT for different versions of
effective-medium theory, we can quantitatively check how
good these effective-medium theories are in describing the
inhomogeneous medium under study.

We now compare these theories by studying a series of
AB gratings with B layer fixed as air and with εA varying from
−∞ to ∞. Fix the working wavelength as λ = 25d, we employ
different versions of effective-medium theory to compute their
corresponding δT ’s and compare the results in Fig. 5(a) as
functions of εA. The effective parameters calculated by the
present theory are plotted in Fig. 5(b) for the sake of easy com-
parison. Figure 5(a) shows clearly that, while the PEC-based
formulas [i.e., Eq. (15)] can only work in the limiting case
with εA → −∞ and the long-wavelength-limit formulas [i.e.,
Eq. (20)] can only work in two small regions −40 < εA < −15
and 0 < εA < 20, our effective-medium theory works very
well in nearly the entire parameter space studied, including
those regions where previous formulas do not work at all.

However, in a small shaded region centered at εA = −3, all
three effective-medium theories do not work well, as shown by
the large values of δT calculated by different theories. A simple
explanation of such failure is that the effective εeff is so large
near the point of εA = −3 that the effective wavelength inside
the medium, defined as λeff = λ0/

√
εeff · μeff , is significantly

enhanced resulting in the failure of the single-mode approxi-
mation. Such a simple picture is reinforced by quantitatively
calculating the overlapping integrals involving higher-order
modes. The inset to Fig. 5(b) depicts how the two most
important overlapping integrals, namely (S00)2 and (S01)2, vary
against εA. Clearly, the coupling between the first high-order
mode inside the grating and the fundamental mode in air
becomes significantly enhanced in the shaded region, and it
can even compete with the coupling between two fundamental
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modes in the vicinity of εA → −3. In fact, the fundamental
mode in region II, which is defined as the mode that has
the largest overlapping integral with the fundamental mode in
region I, changes its wave-function characteristics at the point
εA → −3. Therefore, in such a parameter region, the inner
properties inside the grating are no longer solely dominated
by a single fundamental mode, so that it is impossible to
find an effective-medium theory to homogenize the complex
structure. We note that a similar conclusion has also been
drawn from a different theoretical approach [24,26]. However,
in all other parameter regions as long as the AB grating can be
homogenized as an effective medium, our effective-medium
theory is always the best one to describe the complex system.

Although here we did not consider the nonlocal responses
in developing our effective-medium theory, we note that the
theory can be easily extended to include such effects by simply
considering the oblique-incidence situations. In fact, we find
that our theory, even without considering the nonlocal effects,
can still well describe the optical responses of the gratings
under oblique incidences (see Appendix C). In addition,
we note that the homogenization approach described in this
paper is so general that it can also be employed to develop
effective-medium theories for more complex structures with
two-dimensional microstructures.

V. EXPERIMENTAL VERIFICATIONS

We now perform microwave experiments to verify
the newly developed effective-medium theory for one-
dimensional gratings. To highlight the importance of our
effective-medium theory, we purposely choose a parameter
region where the previous two formulas do not work well.
Figure 5(a) shows that the region where εA takes a moderately
large negative value is a desired region. However, metal does
not exhibit a negative ε in the GHz regime, but rather behaves
like a PEC. To realize a negative-εA slab, we design and
fabricate a three-dimensional metallic mesh structure with
subwavelength square openings. Figure 6 (a) shows the picture
of the fabricated mesh structure, with the inset depicting a
computer-generated zoom-in view of the structure. In the
wavelength regime where λ 
 a with a being the lattice
constant of the mesh, our system is an excellent metamaterial
to mimic a negative-εA slab, as desired.

By computing the transmission/reflection spectra for a slab
of the designed mesh structure, we successfully retrieved the
effective permittivity and permeability of the mesh metama-
terial by the standard S-parameter retrieval method [35]. The
simulated results are plotted in Fig. 6(b), where indeed we
find that εmesh takes a desired negative value in the frequency
region of interest. It is worth noting that μmesh is significantly
smaller than 1, due to the non-negligible diamagnetic effects
in such three-dimensional mesh structures.

Having obtained an appropriate material to represent layer
A, we next take air as layer B to form an AB grating, and
then perform microwave experiments to measure the trans-
mission/reflection spectra of the AB grating. The widths of
layer A and layer B are dA = 3 mm,dB = 2 mm, respectively,
and the total thickness of the constructed AB grating is h =
60 mm. The lateral dimension of the fabricated AB structure
is (400 mm × 400 mm, see Appendix D for sample picture).

FIG. 6. (Color online) (a) Picture of the fabricated metallic mesh,
with inset depicting a computer-generated zoom-in view of the
structure. (b) Effective-medium parameters of the mesh sample,
retrieved from FDTD simulations. (c) Effective-medium parameters
of the air/mesh grating calculated by our effective-medium theory
with dmesh = 3 mm and dair = 2 mm. (d) Transmission spectra of the
air/mesh grating with thickness h = 60 mm, obtained by measure-
ments (star), FDTD simulations on realistic structures (black lines),
and model calculations based on our effective-medium theory (red
line) and the long-wavelength-limit formulas (blue line).

Open stars in Fig. 6(d) are the measured transmittance spec-
trum of the fabricated sample, which is in good agreement with
FDTD simulations on realistic structures. In our experiments,
we have adopted the time-domain gating technique to avoid
multiple reflections between the source and receiver horns (see
Appendix D for experimental details). Meanwhile, knowing
the electromagnetic and geometric properties of the construc-
tional A and B layers, we employ our effective-medium theory

FIG. 7. (Color online) Reflectance for two slabs of AB gratings
under different incident angles, calculated by FDTD simulations
on realistic systems (symbols) and our effective-medium theory on
model systems (lines). Here, the working wavelength is fixed as
λ = 25d . In these AB structures, the B layer is always fixed as air
while the A layer is a dielectric with (a) εA = 40 and a metal with (b)
εA = −100.
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to compute the effective parameters of the resultant AB grating
structure, and depict the results in Fig. 6(c). Using these
effective parameters, we employ the standard TMM to cal-
culate the transmission spectra through a model homogeneous
slab with thickness h = 60 mm. Figure 6(d) shows that our
effective-medium theory can well reproduce both measured
and FDTD simulated transmittance spectra. In contrast, if we
derive the effective parameters based on the long-wavelength-
limit formulas [i.e., Eq. (20)], we find that the corresponding
transmission spectra calculated by such a model show signif-
icant deviations from the experimental results. Results calcu-
lated by PEC-based effective-medium theory [i.e., Eq. (15)]
show even stronger deviations from the experimental and
FDTD results and are not included in Fig. 6(d). Such a compar-
ison unambiguously validates the newly established effective-
medium theory and highlights the importance of adopting our
theory to describe such a grating in general cases, especially
in those cases where previous theories do not work well.

VI. CONCLUSIONS

In summary, we established an effective-medium theory to
homogenize a grating structure consisting of two different
layers with distinct electromagnetic properties. Our theory
can recover two previously developed formulas, which are
valid only at certain limiting conditions, and more importantly,
still works well in parameter spaces where previous formulas
fail. We performed microwave experiments and full-wave
simulations to successfully validate our theory.
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APPENDIX A: DERIVATION OF EQ. (1)

Consider the propagation of a transverse-magnetic (TM)
mode (with nonzero field components Ex,Ez,Hy) in such an
AB structure [see Fig. 1(a)]. Matching boundary conditions
and using the transfer-matrix method (TMM) [29], we find
that the evolution of Hy(x) field across a unit cell in an AB
structure can be written as(

H+
B (d)

H−
B (d)

)
= TBMBATAMAB

(
H+

B (0)
H−

B (0)

)

= Q

(
H+

B (0)
H−

B (0)

)
, (A1)

where

TA =
(

eiPA 0
0 e−iPA

)
, TB =

(
eiPB 0
0 e−iPB

)
, (A2)

MBA = 1
2

(
(1 + �) (1 − �)
(1 − �) (1 + �)

)
,

(A3)

MAB = 1
2

(
(1 + �−1) (1 − �−1)
(1 − �−1) (1 + �−1)

)

in which PA = kA
x dA,PB = kB

x dB, � = εBkA
x

εAkB
x

, and d = dA + dB

is the length of a unit cell. Here + and − denote the field
components for waves propagating to +x and −x directions.
Imposing the Bloch condition, we find that eigenmodes (with
TM polarization) in region II must satisfy

Tr[Q] = 2 cos Kd (A4)

with K being the Bloch wave-vector. Putting Eqs. (A1)–(A3)
into (A4), we get an equation that is just Eq. (1) in the main
text.

APPENDIX B: DERIVATION OF EQ. (7)

As discussed in Ref. [30], the most general form of a
second-order linear differential operator is

L̂ = p(x)
d2

dx2
+ p0(x)

d

dx
+ q(x). (B1)

If p(x),p0(x),q(x) are all real functions and the condition

d

dx
p(x) = p0(x) (B2)

is satisfied, L̂ is called a self-adjoint operator and can be
rewritten as

L̂ = d

dx

[
p(x)

d

dx

]
+ q(x). (B3)

The most remarkable property of a self-adjoint operator is
that it satisfies

〈v|L̂u〉 = 〈L̂v|u〉, (B4)

where u(x),v(x) are two arbitrary complex functions defined
in a bounded region [a,b], and 〈v|L̂u〉 = ∫ b

a
v∗(x) · L̂u(x)dx,

〈L̂v|u〉 = ∫ b

a
(L̂v(x))

∗ · u(x)dx define the inner products be-
tween two relevant functions. Note that either periodic or
vanishing boundary condition should be specified at the
domain boundary in deriving Eq. (B4).

In general, a self-adjoint operator can have the following
eigenfunction equation

L̂u(x) − λw(x)u(x) = 0, (B5)

where λ and u(x) are the eigenvalue and associated eigen-
function, respectively, and w(x) is a real function called the
weight function (metric factor). For any two different eigen-
values λi,λj and their associated eigenfunctions ui(x),uj (x),
according to Eq. (B4), we must have

L̂ui(x) = λiw(x)ui(x), L̂uj (x) = λjw(x)uj (x). (B6)

Meanwhile, the self-adjoint property Eq. (B4) ensures that

〈uj |L̂ui〉 = 〈L̂uj |ui〉. (B7)

Therefore, putting Eq. (B5) into Eq. (B7), we get

(λi − λj )〈ui |wuj 〉 = 0. (B8)

Since λi − λj �= 0, we have the following generalized orthog-
onal condition for any two different modes,

〈ui |wuj 〉 = δij . (B9)
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FIG. 8. (Color online) (a) Picture of the AB grating; (b) schematics of the experimental setup.

We now use the above general knowledge to study our
problem. In our case, we consider a TM mode propagating
inside the AB structure described by relative permittivity ε(x)
and permeability μ(x). Based on Maxwell’s equations, we
obtain the wave equation satisfied by the Hy component, which
can be rewritten as the following form

∂

∂x

(
∂Hy(x)

ε(x)∂x

)
+

(
k2

0μ(x) − k2
z

ε(x)

)
Hy(x) = 0, (B10)

with k2
0 = ω2/c2. Comparing Eq. (B10) with Eqs. (B5) and

(B3), we find that k2
z and Hy(x) are the eigenvalue and eigen-

wave-function of a self-adjoint operator L̂ = d
dx

[ 1
ε(x)

d
dx

] +
k2

0μ(x), respectively. In addition, Eq. (B10) implies that the
weight function in our case is

w(x) = 1

ε(x)
. (B11)

Put the metric Eq. (B11) into Eq. (B9), we get the generalized
orthogonal condition for two different wave functions Hy(x),
which is precisely Eq. (7) in the main text.

The above discussion enables us to find the appropriate
metric functions in more general cases. For example, still in
the TM case, if one rather chooses the Ex field as the wave
functions, then it is easy to prove that the metric function
should be w(x) = ε(x). On the other hand, if the polarization is
TE instead, then the metric functions are completely different
and should be carefully restudied.

APPENDIX C: VALIDATION OF OUR THEORY
UNDER OBLIQUE INCIDENCE: EFFECTS

OF NONLOCAL RESPONSE

In the main text, we have verified our effective-medium
theory under normal-incidence condition. Here, we further
validate our theory under oblique incidences. Such a justifica-
tion also proves that the nonlocal responses of the systems are
not significant, so that our theory, even without considering
the nonlocal effects in its present form, can still work very
well.

In general, the grating structure should be considered as a
uniaxial anisotropic medium with effective permittivity tensor

given as

↔
εeff =

⎛
⎝ε⊥ 0 0

0 ε‖ 0
0 0 ε‖

⎞
⎠ , (C1)

where ε⊥ has been given by our theory. The value of ε‖, on the
hand, can also be easily obtained by extending our theory to
the TE polarization (still under normal incidence), which can
done by noticing the symmetries between �E and �H fields in
TM and TE cases.

With
↔
εeff known from our theory, we next take two

representative grating structures to validate our theory under
oblique incidences. Fixing the working wavelength at λ =
25d, we employed both our theory and the FDTD method
to compute the transmittance/reflectance of two grating struc-
tures (with thicknesses h = 10d) under different incidence
angles. Comparison between FDTD and the effective-medium
theory (Fig. 7) indicates that our theory works well under
oblique incidences.

APPENDIX D: EXPERIMENTAL DETAILS

Figure 8(a) shows a picture of the AB grating sample that we
fabricated and experimentally characterized. The microwave
transmittance spectra were measured by a vector network
analyzer (Agilent E8362C PNA) and the experimental setup is
shown in Fig. 8(b). Two identical horns, separated by a distance
of 106 cm and connected to the network analyzer, were used

FIG. 9. (Color online) Transmittance spectra measured with and
without using the time-domain gating.
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to generate and receive the microwave signals. The microwave
generated from the horn is polarized with �E||x̂, and is normally
coupled into the AB grating. The sample was placed on a
stage, 50 cm away from the receiving horn. The transmittance
is normalized to that measured without the samples. In our
experiments, we used a time-domain gating technique [36]
to cut in the time domain the high-order Fabry-Perot signals,

contributed by multiple reflections between two horns. Such a
technique, widely used in literature [37,38], can help us filter
out the pure transmission/reflection signals contributed by the
sample alone, and thus significantly improve the precision
and stability of the measurement. The transmittance spectra
measured with and without using the time-domain gating are
compared in Fig. 9.
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