Tuning magnetic properties by roll-up of Au/Co/Au films into microtubes
C. Müller, M. S. Khatri, C. Deneke, S. Fähler, Y. F. Mei, E. Bermúdez Ureña, and O. G. Schmidt

Citation: Appl. Phys. Lett. 94, 102510 (2009); doi: 10.1063/1.3095831
View online: https://doi.org/10.1063/1.3095831
View Table of Contents: http://aip.scitation.org/toc/apl/94/10
Published by the American Institute of Physics

Articles you may be interested in
Towards compact three-dimensional magnetoelectronics—Magnetoresistance in rolled-up Co/Cu nanomembranes
Applied Physics Letters 100, 022409 (2012); 10.1063/1.3676269

Optical properties of rolled-up tubular microcavities from shaped nanomembranes

Exceptional transport property in a rolled-up germanium tube

Rolled-up micro- and nanotubes from single-material thin films

Uniaxial and tensile strained germanium nanomembranes in rolled-up geometry by polarized Raman scattering spectroscopy
AIP Advances 5, 037115 (2015); 10.1063/1.4914916

High-performance giant magnetoresistive sensorics on flexible Si membranes
Tuning magnetic properties by roll-up of Au/Co/Au films into microtubes

C. Müller,1,a) M. S. Khatri,2 C. Dencke,1 S. Fäßler,2 Y. F. Mei,1 E. Bermúdez Ureña,1 and O. G. Schmidt1
1Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, D-01069 Dresden, Germany
2Institute for Metallic Materials, IFW Dresden, Helmholtzstraße 20, D-01069 Dresden, Germany

(Received 25 November 2008; accepted 16 February 2009; published online 11 March 2009)

Au/Co/Au trilayers are fabricated by tilted deposition on prestructured polymer sacrificial layers. The metal trilayers are released by selectively dissolving the sacrificial layer and roll-up into microtubes. Magnetization properties are strongly affected by the roll-up process. In addition to a modified shape anisotropy, the magnetostRICTive anisotropy due to the anisotropic stress release is reversed. Low temperature measurements support the presence of significant exchange bias in these roll-up structures. © 2009 American Institute of Physics. [DOI: 10.1063/1.3095831]

Generally, the magnetic properties of small ferromagnetic materials are governed by their size and shape in addition to their intrinsic material parameters. Various shapes such as squares,1 rings,2 wires,3 and tubes4,5 have been reported. Among them, ring-shaped and tubular structures are of much interest due to a low influence of edge roughness and their minimal stray field, resulting in uniform and reproducible switching characteristics. In particular, tubular structures with a low density, which can float in fluids, and with a large surface available for functionalization are promising candidates for in vivo applications (e.g., particle targeting and molecule separation).6

Strain engineering has been used to prepare rolled-up micro- and nanotubes based on semiconductor materials in the past years.7,8 More recently, a method to rearrange prestressed nanomembranes into micro- or nanotubes on polymers has extended the range of material systems, including magnetic materials.9 This technique allows the fabrication of individual tubes as well as large tube arrays in a controlled way. The magnetic tubes created in this fashion have been employed as remotely controlled microjet engines6,9 and magnetofluidic sensors.10 However, to date, no systematic investigations of the roll-up process on the magnetic properties of such tubes have been reported.

In this letter, nanocrystalline microtubes are prepared by the roll-up of the corresponding Au/Co/Au layer stack. The tube diameter is shown to be scalable with the metal film thickness, while their lengths are predefined by the lithographically adjusted pattern size. Structural and chemical analyses reveal that the walls of the microtubes consist of a periodic layer structure. A comparison of the magnetization behavior along the key directions of the prestressed layer stack and the microtubes is used to understand the origin of magnetic anisotropy. Additionally, the effect of the temperature on the magnetization reversal and exchange bias (EB) is studied.

To fabricate the rolled-up microtubes, photoresist layers (ARP-3510 positive resist) with a thickness of ~2 μm on Si (001) were patterned into well-defined squares (20 × 20, 50 × 50, and 100 × 100 μm²) by utilizing conventional photolithography. Thin Au (4 nm)/Co(x)/Au (4 nm) layers were deposited by electron beam deposition at a pressure of <10⁻⁴ Pa onto the photoresist layer. A Co film thickness x between 7 and 22 nm was used. The tilted deposition was performed with an angle of 61° in relation to the normal incidence of the material flux. Using this technique, one side of the photoresist edge becomes shadowed, which facilitates a rolling up of the film in a predefined direction.11 Subsequently, the Au/Co/Au films were rolled-up by dissolving the photoresist layer with acetone. In order to avoid deformation or collapse of the structures, the organic solvent was removed afterward using a supercritical drying step.

Morphology and size of the microstructures were examined using optical microscopy and scanning electron microscopy (SEM). A cross-section of a microtube was carefully prepared by focused ion beam etching using a Zeiss NVision. The obtained lamella was investigated with transmission electron microscopy (TEM) in a FEI Tecnai T20 at 200 kV equipped with an energy dispersive x-ray (EDX) detector for chemical analysis. Magnetic measurements of the planar film and ordered microtube arrays in all key directions were performed in a Quantum Design physical properties measurement system equipped with a vibrating sample magnetometer (VSM) and magnetic field applied in either the parallel or perpendicular direction to the sample. In addition, hysteresis loops of individual film patterns and tubes were measured using a NANO MOKE magnetometer in which the probing laser was focused to ~3 μm.

Figure 1(a) shows an optical microscopy image of well-aligned Au/Co/Au microtubes. Each of them was obtained from a 100 × 100 μm² large film square. After releasing the prestressed layers, the fraction of microtubes amounts to 90% of the magnetic material, whereas the rest of 10% originates from the Au/Co/Au film located in between the rolled areas [bright stripes in Fig. 1(a)]. A SEM image of a typical single microtube with a diameter of ~5 μm and a sketch of the rolling process are illustrated in Fig. 1(b). The driving force for roll-up is the relaxation of stress gradients across the metallic layer stack depending on the deposition parameters (growth rate and substrate temperature).6 In Fig. 1(c) the scalability of the tube diameter12 as a function of total layer thickness is summarized. All the samples were grown at room temperature and with growth rates of ~0.05 and ~0.15 nm/s for the Au and the Co layers, respectively. A variation in the metal layer thickness allows us to tune the tube diameter between ~2 and ~11 μm, corresponding from one to ten windings. An additional control parameter is the area of the pattern, and smaller areas result in smaller tube diameters. The latter effect is believed to originate from
a dependency of the stress relaxation mechanism along two different directions (tube axis and roll-up direction) during the roll-up process.13

Figure 2 summarizes the cross-sectional microscopic structure of the tubes. The periodic arrangement of the Au/Co/Au layers is shown in Fig. 2(a). A \sim3 nm thick gap between adjacent windings, accompanied by a significant surface roughness, is visible. The different materials can be distinguished by their material contrast [Fig. 2(b)], which enables us to estimate a thickness for the Au layer of \sim3 nm and for the Co layer of \sim12 nm, in agreement with the nominal deposition parameters. Furthermore, the EDX mapping recorded along the direction marked in Fig. 2(a) verifies the elemental distribution. EDX line scans for Co, Au, and O are displayed in Fig. 2(c), and seven periods of the Au/Co/Au layer sequence can be clearly identified.

In Fig. 3 we present typical magnetization curves for the Au/Co/Au films and the corresponding rolled-up tubes measured at 300 K. These measurements were performed with the same samples used for the structural investigations. Measurements of the film [Fig. 3(a)] perpendicular to the substrate surface reveal a hard axis loop with low slope and low coercivity H_c of 12 mT, as expected due to shape anisotropy. The saturation magnetization M_S for the film is close to the value for bulk Co (1.4×10^6 A/m). Unexpectedly, we observe a pronounced difference when measuring hysteresis loops for different directions within the film plane. Measurements along 90° (the direction of inclined deposition) exhibit a typical easy axis rectangular loop with H_c of 17 mT. The coercivity along 0° is smaller (\sim10 mT), and the curve is significantly more tilted. The intersection of both in-plane curves gives an average anisotropy field of 12 mT, which is equal to an anisotropy constant of $K=8 \times 10^3$ J/m3. The absence of hcp-Co reflections within XRD measurements (not shown) as well as the absence of any pronounced microstructure in the TEM images allows us to attribute this anisotropy entirely due to stress. The difference of stress along both in-plane directions can be estimated from

$$K = 3/2\lambda_5\sigma,$$ \hspace{1cm} (1)

where λ_5 is the magnetostrictive constant and σ is the stress.14 Using the value for Co $\lambda_5 = -62 \times 10^{-6}$ (Ref. 15) one obtains a difference of stress between both in-plane directions of \sim86 MPa. The sign suggests a more compressive stress along 90° compared to the 0° direction ($\sigma_{0°} > \sigma_{90°} < 0$). As a conclusion, the orientation of the easy axis seems to be supported by this external uniaxial stress, which was induced during the deposition process.

After roll-up the magnetization behavior changes completely [Fig. 3(b)]. First, the magnetic in-plane anisotropy is reversed, and the magnetic saturation field along the out-of-plane direction is significantly decreased. The observed
The latter observation indicates that the anisotropy causing $H_{c(\alpha)}$ is aligned in a different direction compared to the magnetic field applied during FC (see Fig. 4, inset). The drop in $H_{c(\alpha)}$ can be explained when considering the different thermal expansion coefficients α for Co and Si ($\alpha_{\text{Co}}=13 \times 10^{-6} \text{ K}^{-1}$ and $\alpha_{\text{Si}}=3 \times 10^{-6} \text{ K}^{-1}$ at room temperature)\(^{17}\) and adapting the model from Ref. 3. In the present case the tube length is considered to be constrained by the substrate whereas its diameter is free. Thus, when cooling from 300 to 20 K ($\Delta T=-280 \text{ K}$) and using the elastic modulus for Co ($E_{\text{Co}}=204 \text{ GPa at room temperature}$)\(^{18}\) the stress σ_{th} amounts to ~ 570 MPa, with

$$\sigma_{\text{th}} = E_{\text{Co}} \Delta T (\alpha_{\text{Si}} - \alpha_{\text{Co}}).$$

This changes stress along the tube axis from compressive ($\sigma_{\text{th}}<0$) into tensile stress ($\sigma_{\text{th}}>0$). As a consequence magnetic anisotropy is reversed, observable from the change in slope in Fig. 4(a).

In conclusion, the combination of strain engineering, lithography, and deposition techniques is an elegant approach to create well-defined arrays of magnetic microtubes. Our results provide insight into the magnetic switching behavior of rolled-up Au/Co/Au tubes in comparison to the initially flat magnetic films. The EB effect was observed at low temperatures. The tubes are of fundamental interest as well as importance for several applications\(^{19,20}\) and represent a class of integrative structures, which can be easily scaled in size by tuning the preparation parameters.

The authors acknowledge E. Coric for preparation of the TEM lamella. We thank B. Rellinghaus for the access to the FEI Tecnai 20 and D. J. Thurmer for manuscript reading.

\(^{16}\)D. R. Lide, CRC Handbook of Chemistry and Physics (CRC, Boca Raton, 2008).

