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light-triggered subthreshold current. As long as the array size and 
the varieties of smart materials integrated increase, we could expand 
the two-channel system to various types of sensing functions.

To verify the reliability to external stimuli of this smart sensor, cyclic 
characterization and statistical tests were carried out under various 
hydrogen or humidity concentrations. Figure 5A records the variation 
trend of the output signal [drain current, VGS = 1 V, VDS = 0.1 V, PMOS 
(p-type metal oxide semiconductor)] with the variation of H2 con-
centration. For each hydrogen level, the device exhibits a stable signal 
value in the process of increased or decreased gas concentration. Cer-
tainly, the repeatability is in expectation. Figure 5B illustrates the signal 
strength in five independent tests. The device responds in a quite similar 
level at different H2 concentrations. In the detection of RH, the reli-
ability of the smart sensor was demonstrated analogously. Figure 5C 
records the output signal corresponding with different humidities in 
cyclic experiment, while Fig. 5D displays the coincident responsibility 
in five independent tests. All these data determine the reliability to 
different types of stimuli. The Si-NM–based smart sensor exhibits 
great potential in practical application as a multifunctional detector.

DISCUSSION
The optoelectronic sensing of hydrogen concentration and envi-
ronment humidity demonstrate the functional expandability of the 
smart sensor. This flexible device is more like an expandable low- 

power working platform, and various molecular analyses and sensing 
can be realized by decorating the top surface of the phototransistor 
with different sensitive materials. Figure 6A illustrates the integrated 
system design and the concept for the smart digital dust. Benefiting 
from the device-first process, standard logical and power units as 
well as Si-NM phototransistor array (detecting units and blank ref-
erence) can be integrated on one flexible chip with standard IC 
technique. Figure 6B is the schematic illustration of the complete 
system we fabricated by integrating our sensors with amplifier and 
power supply on a substrate to demonstrate the feasibility of our idea. 
The real-time sensing of humidity and processing is achieved, as 
shown in movie S1. The current output in Fig. 6C and the program 
flow chart in Fig. 6D exhibit the mechanism of this system. On the 
standby mode, the sensor and blank reference output current signal 
I0 and IA. The proportionality,  = IA/I0, maintains below a certain 
threshold value (k) without target stimulus. When interacted with 
target gas (e.g., hydrogen), the transmittance change of the sensitive 
material above sensor A leads to an increase of IA (blue curve in 
Fig. 6C), while the current output of the reference sensor remains in 
the original state (red curve in Fig. 6C). By fitting the  value with 
prestored data, the system output the exact value of stimulus level in 
the form of digital signals. Benefits from the blank reference in the 
system, the smart sensor could operate regardless of external illumi-
nation intensity. With a similar principle, various detecting units 
could be integrated into one flexible chip. In that case, the flexible 

Fig. 6. Integrated system design. (A) Functional modules on the flexible smart system. (B) Complete system composed of the phototransistor array (optical image), 
amplifier, power supply, and logic units/memory for the humidity test in real time. (C) Time-dependent current output of the reference sensor (blank phototransistor; red 
dashed lines) and H2 sensor (blue dashed lines). Photo credit: Chunyu You (Fudan University). (D) Program flow chart of the smart system.

 on M
ay 14, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 



Li et al., Sci. Adv. 2020; 6 : eaaz6511     1 May 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 10

and integrated multifunctional detection system can be realized. 
Besides single isolated phototransistors, we took a step forward to 
construct an active matrix-type device (four columns and four rows) 
with a vanadium dioxide (VO2) film to realize heating mapping as 
an enhanced function (fig. S10). VO2 film undergoes a metal-insulator 
transition near room temperature (~68°C), leading to transmittance 
variation, thus influencing the subthreshold drain current of the 
phototransistor. A 1550-nm infrared laser was shed on the device, a 
hard mask was used to create distinctive heating region on our device, 
and the heating map can be achieved correctly.

The optoelectronic sensing of external stimuli brings new light 
to the field of analysis and testing. A combination of high-performance 
phototransistors and stimuli-responsive materials demonstrates the 
functional expandability of Si-NM devices in the detection of vari-
ous physicochemical stimuli. The optoelectronic sensing of hydro-
gen concentration below 0.05 volume % and RH from 43 to 97% has 
been realized. Theoretical analysis and comparative experiments 
reveal the mechanism of hydrogen and humidity detection. The 
device-first, wafer-compatible fabrication of the flexible smart 
sensor based on Si-NM indicates the convenience for the integra-
tion of different sensing and control components to meet multi-
functional requirements on one single chip, which is promising for 
the smart digital dust application. We believe that achievements in 
this work suggest a promising future for the next-generation More 
than Moore technologies.

MATERIALS AND METHODS
The SOI wafers were purchased from the Shanghai Simgui Tech-
nology Co. Ltd. The PI 2000 and Kapton film were purchased from 
DuPont Co. Ltd. Other reagents were purchased from Sinopharm 
Chemical Reagent Co. Ltd.

Fabrication of Si-NM phototransistor
Steps 1 and 2 in fig. S1 illustrate the fabrication of the Si-NM photo-
transistor on rigid wafer. The process of Si-NM phototransition 
starts from the back-grinding of an SOI wafer (340-nm-thick device 
Si and 2-m-thick buried thermal SiO2, weakly p-doped/n-doped) 
to reduce the wafer thickness from ~670 to 200 m. Standard RCA 
cleaning removes contamination on wafer surface. A 600-nm-thick 
SiO2 doping mask is then formed by the plasma-enhanced chemical 
vapor deposition (PECVD), followed by photolithography and chem-
ical etching. The active region of the phototransistor is doped by the 
liquid source phosphorus oxychloride and defined by reactive ion 
etching (RIE). The gate dielectric layer consists of 70-nm SiO2 and 
13-nm Al2O3, deposited by PECVD and ALD, respectively. Cr/Au 
(5/100 nm) electrodes are deposited by the electron beam evaporation. 
At last, rapid thermal annealing at 350°C activated metal contacts 
and completed the fabrication of the Si-NM phototransistor on 
rigid wafer.

Thinning process
Steps 3 and 4 in fig. S1 illustrate the thinning process to get the flex-
ible phototransistors from the rigid SOI wafer. A uniform coating 
and curing process of polyimide (PI 2000) acts as a stress buffer and 
protects the device surface. A 12.5-m-thick Kapton film acts as the 
flexible handling substrate. An ultrathin layer of spin-coated PDMS 
(~5 m) bonded the Kapton film and device together. After a curing 
process in a vacuum oven for 40 min at 110°C, the whole structure 

face down stack on a temporary glass substrate with ~10-m cured 
PDMS as a soft adhesive, leaving the back silicon substrate exposed. 
Then, inductively coupled plasma RIE (SF6/O2) removed the 200-m- 
thick silicon substrate away. The buried oxide layer in SOI acts as an 
etching barrier because of the high selectivity of SF6 in the dry etching 
process. At last, the contact window is defined by photolithograph 
and opened by etching of SiO2. Peeling the manufacture above the 
Kapton film from the temporary glass substrate yields the final 
Si-NM phototransistor.

Decorating Si-NM phototransistor surface with  
sensitive materials
Steps 5-1 and 5-2 in fig. S1 illustrate the realization of the opto-
electronic sensor for hydrogen sensing and humidity measurement, 
respectively. For the application of optoelectronic sensing of hydro-
gen concentration, a palladium layer of 25 nm is deposited on an 
ultrathin polyethylene film, and the film is then stuck on the light- 
sensitive channel of the Si-NM phototransistor. For the application 
of humidity measurement, a 10-nm-thick Al2O3 layer was prede-
posited with ALD to protect the circuit of the Si-NM phototransistor 
in moist environment. After that, a thin layer (~20 m) of hydro-
gel film (UV-cured hydroxyethyl methacrylate–acrylic acid co-
polymer) is decorated on the light-sensitive channel of the Si-NM 
phototransistor.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/18/eaaz6511/DC1
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