Asymmetrically Curved Hyperbolic Metamaterial Structure with Gradient Thicknesses for Enhanced Directional Spontaneous Emission

Lu Wang,† Shilong Li,†‡ Biran Zhang,† Yuzhou Qin,† Zhaowei Liu,§ and Yongfeng Mei†∥

†Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
‡State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
§Department of Electrical and Computer Engineering, University of California, San Diego, California 92093, United States

Supporting Information

ABSTRACT: We demonstrate hyperbolic metamaterials (HMMs) on a curved surface for an efficient outcoupling of nonradiative modes, which lead to an enhanced spontaneous emission. Those high-wavevector plasmonic modes can propagate along the curved structure and emit into the far field, realizing a directional light emission with maximal fluorescent intensity. Detailed simulations disclose a high Purcell factor and a spatial power distribution in the curved HMM, which agrees with the experimental result. Our work presents remarkable enhancing capability in both the Purcell factor and emission intensity, which could suggest a unique structure design in metamaterials for potential application in, e.g., high-speed optical sensing and communications.

KEYWORDS: hyperbolic metamaterial, spontaneous emission, outcoupling, directionality, Purcell factor, fluorescent intensity

Hyperbolic metamaterials (HMMs), as one kind of artificial material featuring extraordinary electromagnetic properties because of its hyperbolic dispersion relationship, have recently attracted significant attention. Unlike the elliptical dispersion of conventional materials, the hyperbolic dispersion results in a sharp increase in the photonic density of states (PDOS) and thus drastically alters the spontaneous emission rate, while enhancement of the emission efficiency as well as directionality. Relevant calculations are performed to elucidate enhancement of the emission directionality by monitoring the emission intensity distribution based on angle-dependent microphotoluminescence (μ-PL) measurement, which matches well with the simulation results. The resulting HMM structure might be a promising candidate for the realization of a hyperlens, liquid refractometers, and a metamaterial-based light source. The HMMs used in this work consist of 20 stacked layers (10 periods) of metal Ag and dielectric TiO2 deposited on top of a tapered glass capillary, which was obtained by pulling a heated glass capillary to reduce its diameter from around 1 μm to dozens of micrometers (see the Supporting Information, Part 1 and Figure S1). Both the TiO2 and Ag layers were prepared by electron beam evaporation with thicknesses of 30 and 10 nm, respectively. On top of the uppermost Ag layer, an extra 10-nm-thick TiO2 layer was deposited as a spacer layer to decrease the dye absorption. As shown in Figure 1a, the resulting HMM has a gradient in its thickness due to the directional deposition, which meets our demands. Subsequently, the HMM-capped tapered glass capillary was dipped into the solution of Rhodamine 6G (R6G) with a concentration of 100 μM for 30 s and then dried in air. Figure 1b shows a scanning electron microscopy (SEM) image of the fabricated sample (cross-sectional view), where the boundary (dashed line) of the deposited HMM layer (w/HMMs) is clearly visible and the bottom part is without HMMs (w/o HMMs). The
cross-sectional details of the deposited multilayer structure were investigated by scanning transmission electron microscopy (STEM), and the focused-ion-beam milling process was adopted for the preparation of the sample’s cross section. A typical STEM image of the cross section at \(\theta = 30^\circ \) is given in Figure 1c, showing the periodic multilayer structure, where \(\theta \) is the angular position with respect to the parallel direction (see Figure 1a). It is noted that the thickness of one single layer at this position is nearly equal to half of the thickness of that at \(\theta = 90^\circ \), as expected, while we can expect both better continuity and smoothness of the stacked layers at \(\theta = 90^\circ \). Figure 1d shows the element mappings for Ag, Ti, and O, by which the structural periodicity and thickness are verified with good homogeneity.

The effective permittivity tensor for the fabricated dielectric/metal multilayer in the planar form can be calculated based on the effective media theory\(^\text{17} \) as

\[
\varepsilon_{\text{eff}} = \begin{bmatrix}
\varepsilon_{\parallel} & 0 & 0 \\
0 & \varepsilon_{\perp} & 0 \\
0 & 0 & \varepsilon_{\text{dl}}
\end{bmatrix}
\]

(1)

\[
\varepsilon_{\parallel} = \frac{\varepsilon_d \varepsilon_m}{(1 - p_m)\varepsilon_m + p\varepsilon_d}
\]

(2)

\[
\varepsilon_{\perp} = p_m \varepsilon_m + (1 - p_m)\varepsilon_d
\]

(3)

where \(\varepsilon_d \) and \(\varepsilon_m \) are the permittivities of dielectric TiO\(_2\) and metal Ag, respectively, and \(p_m = t_m/(t_d + t_m) \) is the filling ratio of Ag. Here, the permittivity \(\varepsilon \) and thickness \(t \) of a single TiO\(_2\) or Ag layer were determined by means of spectroscopic ellipsometry (see the Supporting Information, Part 1 and Figure S2), and the filling ratio \(p_m \) is designed to be 0.25 in order to have a better continuity of Ag layers. Parts a and b of Figure 2 show the calculated radial and tangential components of the effective permittivity tensor, respectively. It is clearly visible that a transition in the dispersion relationship of the dielectric/metal multilayer occurred from elliptical to hyperbolic as \(\varepsilon_{\perp} < 0 \) and \(\varepsilon_{\parallel} > 0 \), while the broad-band response and tunability can be engineered in the fabrication process.\(^\text{18} \) A simple coordinate transformation gives the effective permittivity tensor for the resulting HMMs in the curved form.\(^\text{19} \)

\[
\varepsilon_{\text{eff}} = \begin{bmatrix}
\varepsilon_{\parallel} \cos^2 \theta + \varepsilon_{\perp} \sin^2 \theta & (\varepsilon_{\parallel} - \varepsilon_{\perp}) \sin \theta \cos \theta & 0 \\
(\varepsilon_{\parallel} - \varepsilon_{\perp}) \sin \theta \cos \theta & \varepsilon_{\parallel} \sin^2 \theta + \varepsilon_{\perp} \cos^2 \theta & 0 \\
0 & 0 & \varepsilon_{\text{dl}}
\end{bmatrix}
\]

(4)

which will be used in the simulation part of this work.

To estimate the spontaneous emission rate of a fluorescent molecule near the curved HMMs, the Purcell factor\(^\text{20–22} \) was calculated based on the finite-element-method simulations (see the Supporting Information, Part 2). Here, a tapered glass capillary with a diameter of \(\sim 20 \) \(\mu m \) and a wall thickness of \(\sim 1 \) \(\mu m \) is considered, on top of which the dielectric/metal multilayer with a maximum thickness of \(\sim 0.4 \) \(\mu m \) is applied. Considering the asymmetric feature of the curved HMMs, three Purcell factors in the cases of an electromagnetic dipole located at \(\theta = 0^\circ, 90^\circ, \) and \(270^\circ \), respectively, were calculated. The result for \(\theta = 90^\circ \) is shown in Figure 2c, where the dipole takes three orientations: parallel (\(|| \)), perpendicular (\(\perp \)), and isotropic with respect to the tangent. As can be clearly seen, the transition in the dispersion relationship results in an abrupt increase in the Purcell factor due to the PDOS enhancement as the wavelength increases over about 498 nm. Under the same circumstance, the dispersion transition dominates the Purcell effect; thus, a planar structure presents a value of the Purcell factor comparable to our proposed structure at \(\theta = 90^\circ \). Moreover, by variation of the dipole location (Figure 2d), the Purcell factor can be tuned. Thus, one could utilize the curved HMMs to engineer the light–matter interaction when the Purcell effect is dominant.

The optical property of the tapered-glass-capillary-based asymmetrically curved HMMs was characterized by the \(\mu \)-PL measurements. Owing to the cone-shaped feature of the...
capillary as shown in Figure 3a, characterizations were carried out as a function of the diameter. Here, a laser confocal μ-PL setup was used to focus a 532 nm laser onto the surface of the HMMs to excite R6G molecules and then collect their broadband PL emission. The PL spectra of capillary samples with cross-sectional diameters D of ∼20, ∼40, and ∼60 μm are depicted in Figure 3b. As can be seen, the PL intensity changes with the excitation and collection angle. In addition, enhanced Raman emissions of R6G molecules are achieved, especially at the collecting angle θ of 30°, as shown in the inset of Figure 3b(i). While θ is the angular position with respect to the thinnest point, the layer thickness at the angle θ of 30° induces a greatly enhanced light–matter interaction, where a large localized plasmonic enhancement is achieved because of the decreased continuity and smoothness of the deposited films. In addition, the relationship between the cross-sectional diameter D and the emission enhancement is clearly seen in Figure 3c, where the ratio of the intensities at the emission wavelength of 552 nm of the curved-to-flat HMMs is shown. A stronger emission enhancement is obtained at a smaller cross-sectional diameter because of its larger curvature, where the intensity of the excited electromagnetic field increases, resulting in a better far-field light outcoupling. In conclusion, these experimental results demonstrate both the enhancement and directionality of the emission due to the asymmetrically curved HMMs.

While the whispering-gallery mode resonances have been observed via the tapered fiber coupling method shown in Figure S3 (see also the Supporting Information, Part 3), they are absent in the μ-PL measurements because of the cone-shaped structure, which, by itself, cannot support any axial confinement for the emission light. This nonresonance character ensures a wide-band emission enhancement. On the other hand, future work might be done on resonant curved HMMs by introducing an axial confinement via well-defined diameter variations.

Moreover, to extract the emission directionality characteristics, a more detailed PL experiment was performed based on a capillary with a diameter of ∼20 μm. In Figure 4a, the experimental results of the intensity enhancement at emission wavelengths of 540–600 nm (depicted by the radial axis) demonstrate increased directionality and efficiency. The intensity enhancement was defined as the R6G molecules’ emission on the resulting HMMs compared with that on planar HMMs. A maximum enhancement above 60 times can be achieved with the excitation and collection angles θ of about 0° and 180°. The intensity enhancement at θ = 0° and 180° results from the contributions of the outcoupling of nonradiative modes due to the notch where the thickness of the HMM layer is close to 0 nm gradually.

To further confirm this phenomenon, a simulation model with dozens of dipoles placed inside the HMM layer was completed for the stimulated emission. In Figure 4b, we present the power distribution of isotropic dipoles based on a curved structure with a diameter of 20 μm (see the Supporting Information, Part 4, for more details). The power distribution at an emission wavelength of 552 nm indicates propagation of the electromagnetic energy, which confirms the directional emission effect of using an asymmetrically curved structure. It is noticed that a number of waves travel inside the HMM layer until they hit its boundary, while for the curved HMM layer, those modes with high wave vectors can be outcoupled to the free space thanks to the asymmetric structure-induced notch, which matches well with the experimental results of the intensity enhancement. Thus, as mentioned, for the proposed structure, it is feasible to realize a directional spontaneous emission enhancement while still embracing an excellent Purcell effect.

CONCLUSIONS

Asymmetrically curved HMMs exhibit enhancement for the spontaneous emission due to their unique outcoupling scheme for nonradiative waves. The intensity distribution detected through the μ-PL technique indicates enhancement of both the directionality and efficiency from the thickness-graded curved...
structure. Such curved HMMs, maintaining excellent property in the Purcell effect, can achieve a maximum intensity enhancement of about 80-fold for directional emission compared with planar HMMs. Our work offers an interesting design for HMMs to outcouple the plasmon modes for far-field emission, which could apply to other metamaterials and photonic structures for the required light–matter interaction.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.7b19721.

Fabrication and optical properties, electromagnetic simulations of the Purcell effect, transmission measurements, electromagnetic simulations of the power distribution, and related experimental details (PDF)

AUTHOR INFORMATION

Corresponding Author
*E-mail: yfm@fudan.edu.cn.

ORCID

Yongfeng Mei: 0000-0002-3314-6108

Author Contributions
L.W., S.L., Z.L., and Y.M. conceived and designed the experiments. L.W. performed the experiments and simulations. Y.F. and Y.Q. guided the theoretical calculation. Z.T. and Y.L. contributed to the characterization. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work is supported by the Natural Science Foundation of China (Grants 61628401, U1632115, and 61728501), Science and Technology Commission of Shanghai Municipal Government (Grant 17JC1401700), National Key Technologies R&D Program of China (Grant 2015ZX02012-003), and Changjiang Young Scholars Program of China. Part of the experimental work has been carried out in Fudan Nanofabrication Laboratory. S.L. acknowledges financial support by the Office of China Postdoctoral Council (No. 32 Document of OCPG, 2017).

REFERENCES

