Strain effect on intersubband transitions in rolled-up quantum well infrared photodetectors

To cite this article: Han Wang et al 2017 J. Semicond. 38 054006

View the article online for updates and enhancements.
Strain effect on intersubband transitions in rolled-up quantum well infrared photodetectors

Han Wang2, Shilong Li1, Honglou Zhen1, Xiaofei Nie1,2, Gaoshan Huang3, Yongfeng Mei3,†, and Wei Lu1,†

1National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Department of Materials Science, Fudan University, Shanghai 200433, China

Abstract: Pre-strained nanomembranes with four embedded quantum wells (QWs) are rolled up into three-dimensional (3D) tubular QW infrared photodetectors (QWIPs), which are based on the QW intersubband transition (ISBT). A redshift of \sim0.42 meV in photocurrent response spectra is observed and attributed to two strain contributions due to the rolling of the pre-strained nanomembranes. One is the overall strain that mainly leads to a redshift of \sim0.5 meV, and the other is the strain gradient which results in a very tiny variation. The blue shift of the photocurrent response spectra with the external bias are also observed as quantum-confined Stark effect (QCSE) in the ISBT.

Key words: quantum well infrared photodetector; rolled-up microtube; strain; Stark effect

DOI: 10.1088/1674-4926/38/5/054006 PACS: 61.72.Uj; 73.21.Fg; 62.20.dq

1. Introduction

Functional inorganic nanomembranes with embedded quantum wells (QWs) or self-assembled quantum dots (QDs) have shown the ability to roll up into three-dimensional (3D) micro-/nanoscale tubular structures/devices[1–3]. The embedded quantum entities can manifest themselves as light emitters, so that various optical components based on the 3D microstructures have been demonstrated such as optical microcavities[4–6], lasers[7,8], and couplers[9]. The strain issue due to the rolling is of interest and has been recently investigated for these optical components[10,11]. On the other hand, the quantum entities embedded in nanomembranes can be functionalized as on-demand light absorbers for optoelectronics[12]. For instance, 3D tubular infrared photodetectors based on the QW intersubband transition (ISBT) have recently been demonstrated, in which an omnidirectional coupling characteristic has been observed owing to their circular symmetric structure[13]. Hence, the strain effect due to the rolling[11] is expected on these optoelectronic devices. However, so far as we know, there is no report about the strain effect on the performance of such rolled-up tubular optoelectronic devices from planar nanomembranes.

In this letter, we investigate the strain effect on ISBT in rolled-up QW infrared photodetectors (QWIPs). QW-embedded nanomembranes are rolled up as 3D tubular QWIPs and the photocurrent response as the external bias is measured experimentally. Energy shifts of the response spectra in these QWIP devices is analyzed and can be attributed to the variation of strain states. These results can help with not only the further development of the 3D tubular QWIPs, but also the physical understanding of other rolled-up optoelectronic devices.

2. Device fabrication

The 3D tubular QWIP was rolled up from multilayered nanomembranes grown by metal-organic chemical vapor deposition (MOCVD) on GaAs (100) substrate, as sketched in Fig. 1(a). The layered structure of the designed nanomembranes is shown in Fig. 1(b). Starting from the substrate, a 30-nm AlAs sacrificial layer was first grown, and the next layer is a 20-nm In$_{0.2}$Al$_{0.8}$Ga$_{0.2}$As strained layer, followed by a 40-nm GaAs bottom contact layer with an n-doping of 1×10^{18} cm$^{-3}$. Then, on the 3-nm AlAs corrosion block layer, four QWs composed of a 5.5-nm n-doping (5×10^{17} cm$^{-3}$) GaAs well and two 30-nm Al$_{0.28}$Ga$_{0.72}$As barriers per period were grown. The remaining layers were a 20-nm n-doping (1×10^{18} cm$^{-3}$) GaAs conductive layer, a 2-nm AlAs corrosion block layer, a 2-nm AlAs corrosion block layer, and a 300-nm n-doping (1×10^{18} cm$^{-3}$) GaAs top contact layer. In the end, the QW-embedded nanomembrane was rolled up into a microtube when the underneath AlAs sacrificial layer was removed. More details on the fabrication processes of such a rolled-up tubular QWIP can be found in the previous work[13]. Here, an optical image of a 3D tubular QWIP as well as the SEM image of the part of a microtube are shown in Figs. 1(c) and 1(d). In addition, planar QWIP devices with a 45° edge facet were fabricated for comparison, which have the same layered structure of nanomembrane and the same area of active region as those of the tubular devices. These QWIP devices were fixed in a Dewar and operated at around 70 K. Unpolarized...
infrared light was shone on the top of the 3D tubular devices, as shown in Fig. 1(a) and the right inset in Fig. 2(a), whereas the planar device was illuminated by the incident light on the 45° edge facet, as shown in the left inset in Fig. 2(a). Photocurrent response spectra were measured by a Fourier transform infrared (FTIR) spectrometer (Nicolet 6700).

3. Results and discussion

The normalized photocurrent response spectra of the 3D tubular and the corresponding 45° edge-facet QWIPs under a bias of 0.2 V are shown in Fig. 2(a). About 20-nm redshift for the peak wavelength is observed for the 3D tubular device compared to the planar one. The shift of the peak wavelength results from the strain relaxation for the rolling, and has been observed in optical spectra of the passive rolled-up structures as well [11,14]. However, none of these works used the QW ISBT, or few of them realized an optoelectronic active device. Hence, the strain-induced shift for the ISBT in rolled-up QWIP devices will be explained in detail later.

3.1. QCSE

Fig. 2(b) shows the normalized photocurrent response spectra of the 45° edge-facet QWIPs under various biases. As can be seen, about 57-nm blueshift for the peak wavelength is...
observed as the bias increases from 0.2 to 0.9 V. The blueshift is attributed to the well-known quantum-confined Stark effect (QCSE)\(^{[15, 16]}\) in ISBT. The QCSE of the 45° edge-facet QWIP devices is more evident in Fig. 2(c), where the peak energy as a function of the bias is shown and a parabolic relationship between the two physical quantities is clearly visible. According to the second-order perturbation theory of QCSE\(^{[17]}\), the Stark energy shift \(\Delta E\) for a symmetric QW is proportional to the external electric field \(F\), i.e.,

\[
\Delta E = 2q^2 F^2 \frac{|z|}{E_2 - E_1} = A_{\text{symm}} F^2,
\]

where \(q\) is the electron charge, \(z\) is the element of the dipole matrix, and \(E_1, E_2\) are the ground state and the first excited state energy of the QW, respectively. Therefore, the calculated result \(A_{\text{symm}}\) for our 45° edge-facet QWIP is \(-3.2 \times 10^{-4}\) meV·cm²·kV⁻², which is in good agreement with the experiment result \(-2.9 \times 10^{-4}\) meV·cm²·kV⁻². As shown in Fig. 2(c), the parabolic QCSE is also observed for the 3D tubular devices, which, however, have a larger value \(A_{\text{symm}} \sim 3.5 \times 10^{-4}\) meV·cm²·kV⁻². It is the result of lattice relaxation of QWs after the rolling, which leads to the variation in the width of QWs and the shape of conduction-band edges.

3.2. Strain effect on the ISBT

As mentioned above (see Figs. 2(a) and 2(c)), the peak energy of photocurrent response spectra redshifts about 0.42 meV when a planar QW nanomembrane is rolled up into a microtube. The QW nanomembrane is a multilayered structure. The initial strain \(\varepsilon_{\text{int,QW}}\) in the QW region can be simplified as zero since the lattice constants of GaAs and Al\(_{0.28}\)Ga\(_{0.72}\)As are almost the same. The strain for the rolling is from the strained In\(_{0.2}\)Ga\(_{0.8}\)As layer, where the initial strain \(\varepsilon_{\text{int,InAlGaAs}}\) is about 1.43%. When the pre-strained nanomembrane is bent, the lattice constants and the resultant strain states are altered\(^{[18, 19]}\). The total volumetric strain \(\varepsilon_{\text{QW}}\) in the QW region of the bent nanomembrane can be described by\(^{[19]}\)

\[
\varepsilon_{\text{QW}}(z) = \varepsilon_{0,\text{QW}} + \frac{1 - 2\nu}{1 - \nu} \frac{z}{R},
\]

where \(\nu\) is the Poisson’s ratio, \(1/R\) is the curvature, and the coordinate origin is located at the inner surface of the bent nanomembrane. It is seen from Eq. (2) that the volumetric strain \(\varepsilon_{\text{QW}}\) consists of two parts, i.e., the overall strain \(\varepsilon_{0,\text{QW}}\) across the QW region and the strain gradient \((1 - 2\nu)/(1 - \nu)\)(\(z/R\)). The former is a constant which is not equal to \(\varepsilon_{\text{int,QW}}\) because of the redistribution of strain after the bending/rolling, and the latter is a variable determined by the continuity of lattice. Since the photocurrent response of our devices comes mainly from the ISBT of QWs, only the effect of strain on the conduction band is considered. The energy shift for the conduction-band edge (Gamma band edge) due to the strain relaxation reads\(^{[20]}\)

\[
E_{\text{str}}^\text{c} = a_c \varepsilon_{\text{QW}}(z) = a_c \varepsilon_{0,\text{QW}} + a_c \frac{1 - 2\nu}{1 - \nu} \frac{z}{R},
\]

where \(a_c\) is the deformation potential\(^{[21]}\). It contains two contributions as well: the overall strain potential \(a_c\varepsilon_{0,\text{QW}}\) across the QW region and the strain gradient potential \(a_c(1 - 2\nu)/(1 - \nu)\)(\(z/R\)). The two contributions on the ISBT of QWs are different and are discussed in the following.

First of all, the strain gradient potential is a linear function of the coordinate \(z\). As a result, the QW conduction-band edge is tilted, as shown in Fig. 3(a). Since the 30-nm barrier layer is thick enough to prevent coupling between the intersubband electron wave functions confined in the adjacent wells, only a single QW is considered here. Similar to the QCSE in ISBT, the energy shift induced by the strain gradient potential which acts as a perturbation term can also be solved based on the second-order perturbation theory, and is given by

\[
\Delta E_{\text{grad}} = 2 \left(a_c \frac{1 - 2\nu}{1 - \nu} \frac{z}{R} \right)^2 \frac{|z|}{E_2 - E_1},
\]

with the parameters of \(a_{c,\text{GaAs}} = -7.17\) eV\(^{[22]}\), \(\nu = 0.31\)\(^{[22]}\), and \(R = 35\) μm, \(\Delta E_{\text{grad}}\) is about \(5 \times 10^{-4}\) meV for the 3D tubular devices. It is positive, and thus will give rise to a blueshift in the photocurrent response spectrum, which is contrary to the experimental observations. However, it is also too small to be observed and can be ignored. Therefore, the redshift in photocurrent response spectra does not originate from the strain gradient potential.

Now the effect of the overall strain potential \(a_c\varepsilon_{0,\text{QW}}\) on the ISBT of QWs is inspected. Since the QW strain has a linear...
4. Conclusion

The 3D tubular QWIPs from QW-embedded planar nanomembranes have been fabricated on the basis of the rolled-up nanotechnology. The blueshift in photocurrent response spectra of the rolled-up QWIP devices as the external bias varies has been explained as the QCSE in ISBT. The redshift in the photocurrent spectra as the planar nanomembranes are rolled up into microtubes has been analyzed in detail, and mainly attributed to the change of the overall strain. Our results demonstrate that strain states in nanomembranes can be used for tuning the light absorption of a QWIP device, and for potential applications in QW-based emitters or microtube-based optoelectronic devices.

References

[17] Rosencher E, Vinter B. Optoelectronics. Cambridge: Cambridge}

![Fig. 4. (Color online) Strain distributions in the QW nanomembranes before (blue solid line) and after (red solid line) the rolling. Green short lines indicate the position of the four wells embedded into the nanomembranes.]

[22] Li E H. Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures. Physica E, 2000, 5(4): 215